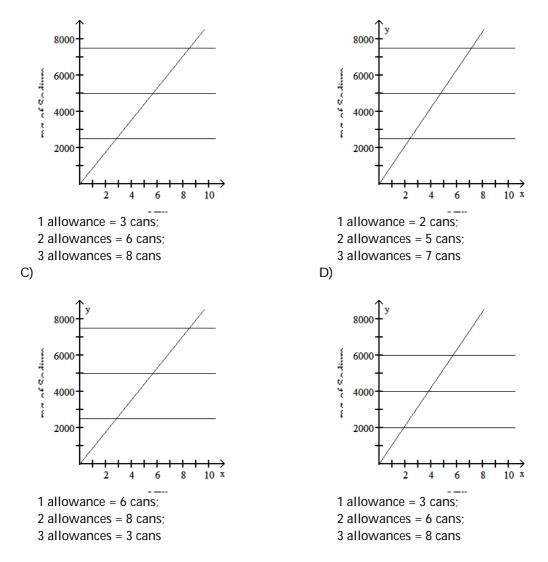
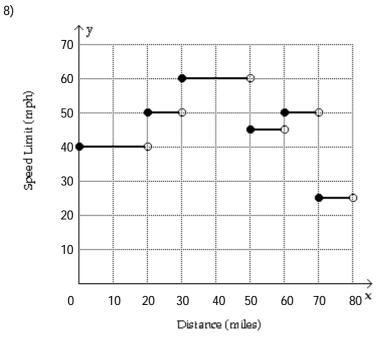
## MATH 1710 College Algebra Final Exam Review


MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

| Solve | the problem.                                                                       |                         |                            |                             |    |
|-------|------------------------------------------------------------------------------------|-------------------------|----------------------------|-----------------------------|----|
|       | 1) There were 480 people at a play admission receipts were \$770. H                |                         |                            |                             | 1) |
|       | A) 192 adults and 288 childre                                                      |                         | B) 290 adults and 190      |                             |    |
|       | C) 95 adults and 385 children                                                      | 1                       | D) 190 adults and 290      | children                    |    |
|       | 2) A store is discounting all regula<br>price of an item having a regula<br>price? | 51 5                    |                            | •                           | 2) |
|       | A) $f(x) = x - 30$ ; \$169.54                                                      |                         | B) f(x) = 0.3x; \$59.86    |                             |    |
|       | C) $f(x) = x - 0.3$ ; \$199.24                                                     |                         | D) $f(x) = x - 0.3x; $139$ | .68                         |    |
|       | 3) Your company uses the quadra                                                    | tic model $y = -4.5x^2$ | + 150x to represent the a  | verage number of new        | 3) |
|       | customers who will be signed o<br>customers can you expect to ga                   | n (x) weeks after the   | -                          | 0                           | -, |
|       | A) 1218 customers B)                                                               | 609 customers           | C) 168 customers           | D) 2037 customers           |    |
|       | 4) Let f(x) compute the cost of a re compute?                                      | ntal car after x days o | of use at \$50 per day. Wh | at does f <sup>-1</sup> (x) | 4) |
|       | A) The number of days rented                                                       | d for 50 dollars        | B) The cost of rental for  | or x days                   |    |
|       | C) The cost of rental for 50 da                                                    |                         | D) The number of day       |                             |    |
|       | 5) If x dollars is deposited every for                                             | our weeks (13 times a   | year) into an account pa   | ying an annual              | 5) |
|       | interest rate r, expressed in deci                                                 | imal form, then the a   | mount A n in the accour    | nt after n years can be     |    |
|       | approximated by the formula A                                                      |                         |                            |                             |    |
|       | If a retirement account pays 9%                                                    |                         |                            | ear-old worker would        |    |
|       | have to deposit in this account                                                    |                         | 5                          |                             |    |
|       | •                                                                                  | \$124.51                | C) \$6806.16               | D) \$12,451.12              |    |
|       | 4) Prond A coup contains 002                                                       | iarams of sodium. It    | ic rocommonded that a -    | orcon roquiring 2000        | 4) |
|       | 6) Brand A soup contains 883 mill                                                  | igrams or sourum. It    | is recommended that a p    | erson requiring 2000        | 6) |

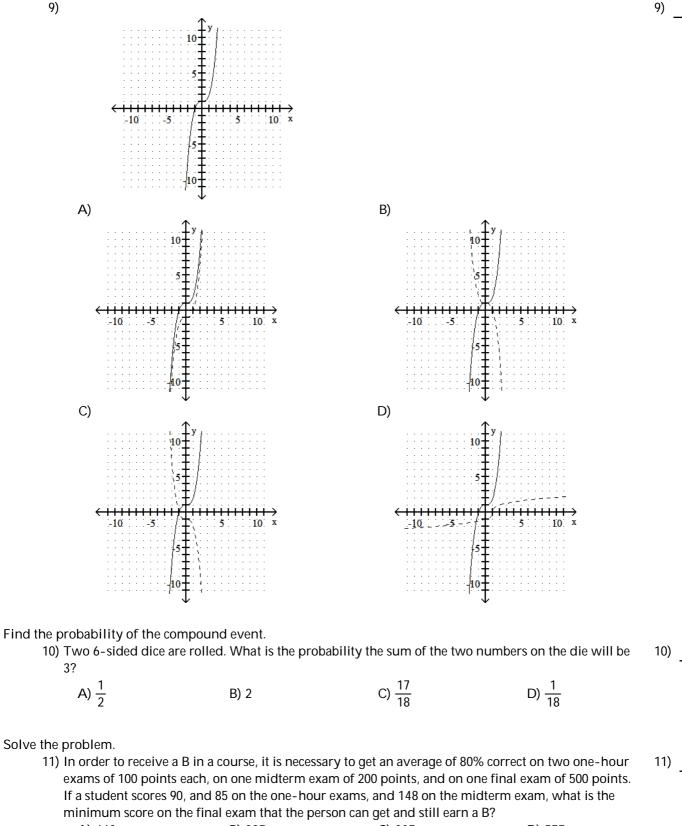
6) Brand A soup contains 883 milligrams of sodium. It is recommended that a person requiring 2000 calories daily consume 2500 mg of sodium or less per day. Graph the function, f, that computes the number of mg of sodium in x cans of soup together with  $y_1 = 2500$ ,  $y_2 = 5000$ ,  $y_3 = 7500$  in [0,


10, 1] by [0, 8000, 1000]. Use the intersection-of-graphs method to find how many cans of soup contain 1, 2, and 3 daily allowances of sodium.

mg of Sodium



7) The inequality |T - 40| ≤ 7.1 describes the range of monthly average temperatures T in degrees Fahrenheit at a City X. (i) Solve the inequality. (ii) If the high and low monthly average temperatures satisfy equality, interpret the inequality.


- A) -42.7  $\leq$  T  $\leq$  45.4; The monthly averages are always within 5.4° of 40°F.
- B)  $-47.1 \le T \le 54.2$ ; The monthly averages are always within  $14.2^{\circ}$  of  $40^{\circ}$ F.
- C)  $37.3 \le T \le 42.7$ ; The monthly averages are always within 2.7° of 40°F.
- D) 32.9  $\leq$  T  $\leq$  47.1; The monthly averages are always within 7.1° of 40°F.



The graph of y = f(x) gives the speed limit y along a rural highway after traveling x miles. (i) What are the maximum and minimum speed limits along this stretch of highway? (ii) Estimate the miles of highway with a speed limit of 50 miles per hour.

- A) Maximum 70 mph; minimum 20 mph; 15 miles
- B) Maximum 65 mph; minimum 25 mph; 22.5 miles
- C) Maximum 60 mph; minimum 35 mph; 20 miles
- D) Maximum 60 mph; minimum 25 mph; 20 miles

Use the graph of f to sketch a graph of the inverse of f using a dashed curve.



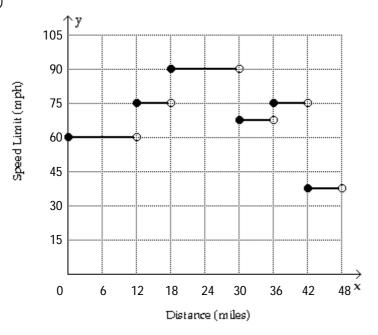
12) The cost for labor associated with fixing a washing machine is computed as follows: There is a fixed
12) charge of \$25 for the repairman to come to the house, to which a charge of \$29 per hour is added.
Find an equation that can be used to determine the labor cost, C(x), of a repair that takes x hours.

| A) $C(x) = 25 + 29x$    | B) C(x) = 25 - 29x   |
|-------------------------|----------------------|
| C) $C(x) = (25 + 29) x$ | D) $C(x) = 29 + 25x$ |

Solve the logarithmic equation symbolically.

13) 
$$\log x^8 = 3 + 6 \log x$$
  
A)  $x = 810^9$ 
B)  $x = 10^{3/2}$ 
C)  $x = 10^{9/8}$ 
D)  $x = \frac{10^3}{2}$ 

14)


15)

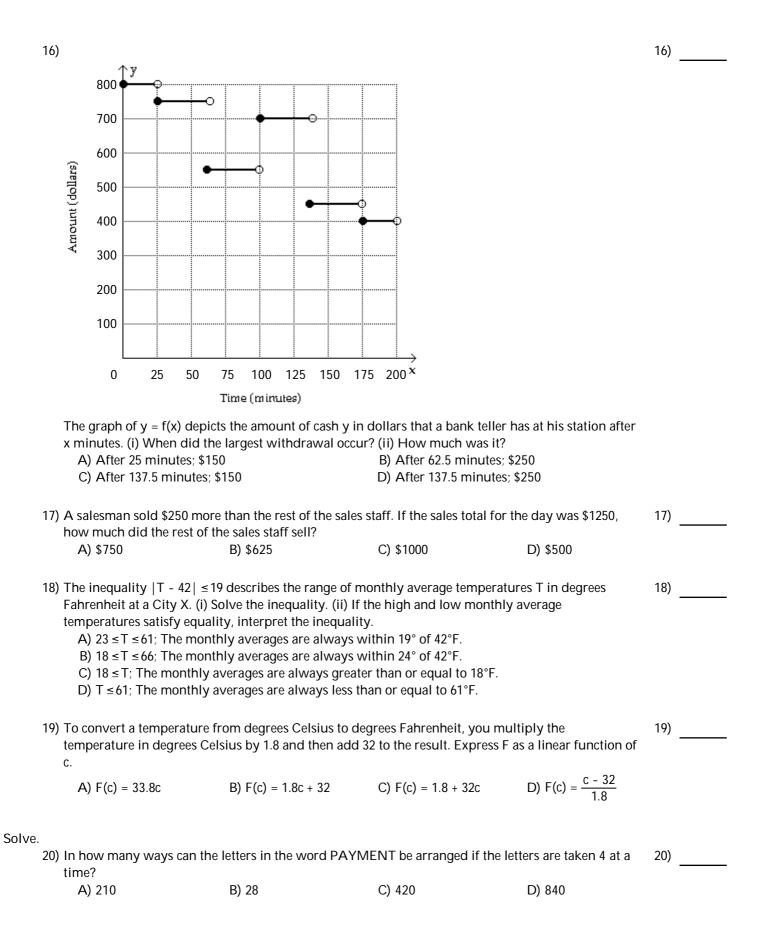
Use common or natural logarithms to solve the exponential equation symbolically.

14) 
$$2^{(5 - 3x)} = \frac{1}{16}$$
  
A)  $x = -3.4$  B)  $x = 3.4$  C)  $x = -3$  D)  $x = 3$ 

Solve the problem.

15)




The graph of y = f(x) gives the speed limit y along a rural highway after traveling x miles. (i) Evaluate f(12), f(33), and f(36). (ii) At what x-values is the graph discontinuous?

A) 60, 75, 75; f(3), f(12), f(24), f(30), and f(36)

B) 60, 60, 75; f(6), f(12), f(18), f(36), and f(42)

C) 75, 67.5, 75; f(12), f(18), f(30), f(36), and f(42)

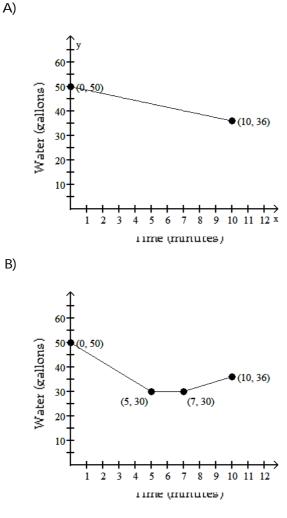
D) 67.5, 75, 90; f(6), f(12), f(18), f(30), and f(36)



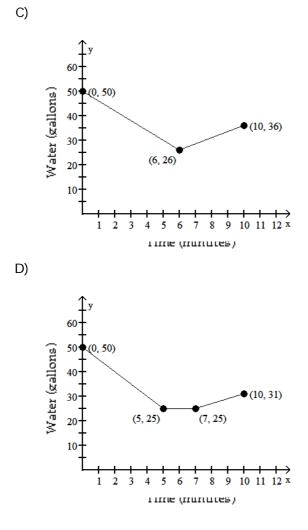
Solve the logarithmic equation symbolically.

21) In 3x + In 6x = In 19

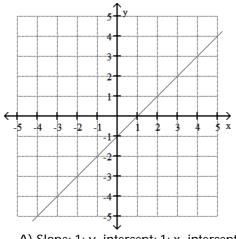
A) 
$$x = 1$$
 B)  $x = \frac{e^{19}}{18}$  C)  $x = \left(\frac{19}{18}\right)^{1/2}$  D)  $x = 0$ 


Solve the problem.

22) The following table gives the outside temperature in degrees Fahrenheit on a winter day in Death V 22) California.


| Time             | 7:00 am | 8:00 am | 9:00 am | 10:00 am | 11:00 am |
|------------------|---------|---------|---------|----------|----------|
| Temperature (°F) | 78      | 84      | 85      | 91       | 95       |

Calculate the average rate of change in temperature between 7:00 am and 10:00 am. Round your ans two decimal places when appropriate.


23) Sketch a graph that depicts the amount of water in a 50-gallon tank. The tank is initially full, and then a pump is used to take water out of the tank at a rate of 4 gallons per minute. The pump is turned off after 5 minutes. At that point, the pump is changed to one that will pump water into the tank. The change takes 2 minutes and the water level is unchanged during the switch. Then, water is pumped into the tank at a rate of 2 gallons per minute for 3 minutes.

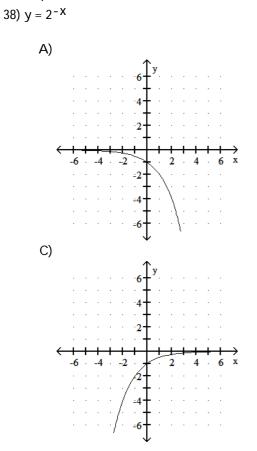


23)



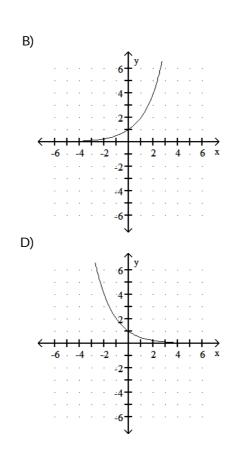
Identify the slope, y-intercept, and x-intercept. 24)




A) Slope: 1; y-intercept: 1; x-intercept: -1 C) Slope: 3; y-intercept: -1; x-intercept: 1

B) Slope: 1; y-intercept: -1; x-intercept: 1D) Slope: -1; y-intercept: 1; x-intercept: -1

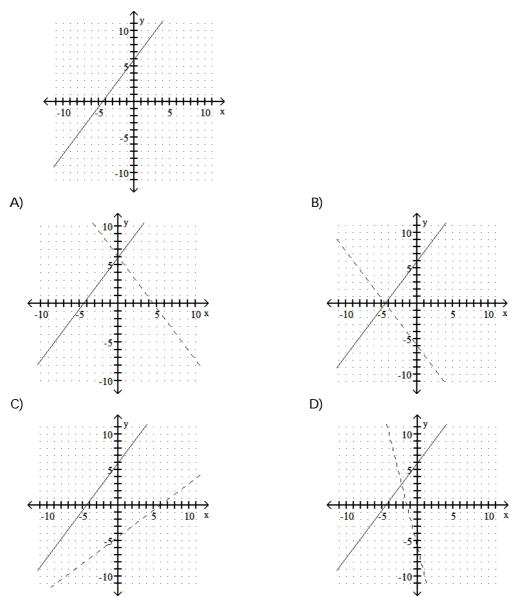
|                                                                    | e are rolled what is the probab                                                                                                        |                                                                    |                           | 25) |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------|-----|
| A) $\frac{1}{2}$                                                   | B) <u>-31</u><br><u>64</u>                                                                                                             | C) <u>33</u><br><u>64</u>                                          | D) $\frac{1}{4}$          |     |
| Complete numerical represe<br>26) (g र्ग)(1)                       | entations for the functions f a                                                                                                        | nd g are given. Evaluate th                                        | e expression, if possible | 26) |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $             |                                                                                                                                        |                                                                    |                           |     |
| x -5 -1 1<br>g(x) 1 -5 5<br>A) -1                                  | 3<br>11<br>B) 11                                                                                                                       | C) -5                                                              | D) 5                      |     |
| Compute the average rate o                                         | f change of f from x <sub>1</sub> to x <sub>2</sub> . R                                                                                | ound your answer to two c                                          | lecimal places when       |     |
| appropriate. Interpret your<br>27) $f(x) = -3x + 4, x_1 =$         | result graphically.                                                                                                                    |                                                                    |                           | 27) |
| B) -4; the slope<br>C) -3; the slope                               | of the line passing through (-5<br>of the line passing through (-<br>of the line passing through (-<br>of the line passing through (-5 | 5, f(-5)) and (-2, f(-2)) is -4<br>5, f(-5)) and (-2, f(-2)) is -3 |                           |     |
| Solve the problem.<br>28) In Country X, the                        | average hourly wage in dollar                                                                                                          | s from 1945 to 1995 can be r                                       | nodeled by                | 28) |
| $f(x) = \begin{cases} 0.077(x - 1) \\ 0.186(x - 1) \end{cases}$    | $945$ ) + 0.34if $1945 \le x < 197$ $970$ ) + 3.03if $1970 \le x \le 1995$                                                             | 0<br>5                                                             |                           |     |
| Use f to estimate t<br>A) \$0.73, \$3.03,                          | he average hourly wages in 19<br>\$6.75 B) \$3.42, \$(                                                                                 |                                                                    | 60.73, \$2.27, \$6.75     |     |
|                                                                    | oped off of a tower, the velocity<br>2 and adding 10 to the result. I                                                                  | -                                                                  | -                         | 29) |
| A) V(t) = 42t                                                      | B) V(t) = $\frac{t-10}{32}$                                                                                                            | C) V(t) = 32t + 10                                                 | D) V(t) = 32 + 10t        |     |
| Solve the inequality symbo<br>30) 6 + 5y - 9≥4y + 3                | lically. Express the solution se                                                                                                       |                                                                    |                           | 30) |
| A) (-∞, 6]                                                         | B) (-∞, 5)                                                                                                                             | C) [6, ∞)                                                          | D) (5, ∞)                 |     |
| Specify the domain of the f<br>31) f(x) = 2x <sup>2</sup> + 6x - 1 | unction.                                                                                                                               |                                                                    |                           | 31) |
| A) x < 0<br>C) x > 0                                               |                                                                                                                                        | B) x ≠ 0<br>D) All real numbers                                    |                           |     |
| Solve the equation.                                                |                                                                                                                                        |                                                                    |                           |     |
| 32)   r + 2   = 4<br>A) -2                                         | B) -6, 2                                                                                                                               | C) No solution                                                     | D) 6, 2                   | 32) |


| 2x - 5y - 9z =<br>x + y + z = 7                            | ,                           | , 9, -4) is a solutior     | n of the system of equatior  | ns. 33)            |
|------------------------------------------------------------|-----------------------------|----------------------------|------------------------------|--------------------|
| 3x - y + 5z = 3<br>A) Yes                                  | 35                          | B) N                       | lo                           |                    |
| 34) The perimeter<br>of the sides.                         | of a rectangle is 22 cm. Or | ne side is 5 cm long       | ger than the other side. Fir | nd the lengths 34) |
| A) 4, 9                                                    | B) 3, 8                     | C) 3                       | , 5 D) é                     | o, 11              |
| Solve.<br>35) There are 5 we<br>occur?                     | omen running in a race. H   | ow many first, seco        | ond, and third place possil  | pilities can 35)   |
| A) 125                                                     | B) 60                       | C) 1                       | 5 D) 1                       | 0                  |
| 36) In how many                                            | ways can 7 people line up   | for play tickets?          |                              | 36)                |
| A) 7                                                       | B) 823,543                  | C) 1                       | D) 5                         | 5040               |
| Write the system of line<br>37)<br>5 5 3   -2<br>4 0 7   4 | ar equations that the aug   | mented matrix rep          | resents.                     | 37)                |
| 890 2                                                      |                             |                            |                              |                    |
| A) 5x + 5y<br>4x                                           | + 3z = -2 B)                |                            | 2 C) 5x + 5y<br>4x           |                    |
|                                                            |                             | 3x + 4z = 4<br>8x + 9y = 2 |                              |                    |

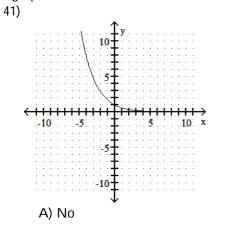
Graph the exponential function.



Specify the domain of the function.


39) 
$$f(x) = \frac{(x+8)(x-8)}{x^2+64}$$
  
A) x > 64  
C) x ≠ 64



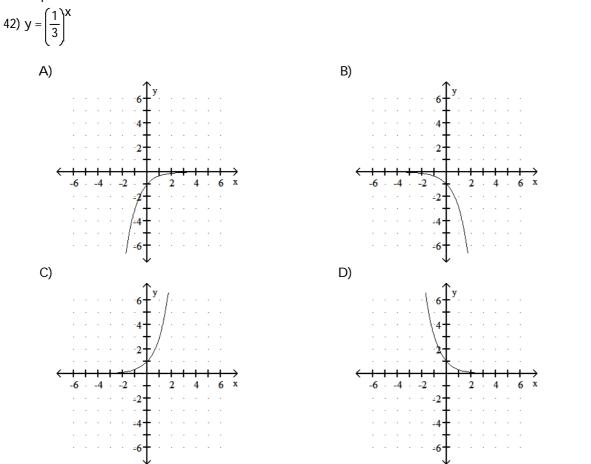

B) x ≠8, x ≠ -8D) All real numbers

38)

Use the graph of f to sketch a graph of the inverse of f using a dashed curve. 40)



Use the graph to determine whether the function is one-to-one.




41)



12

Graph the exponential function.



Use common or natural logarithms to solve the exponential equation symbolically.

43) 
$$2^{(7 + 3x)} = \frac{1}{4}$$
  
A)  $x = -\frac{\ln 2}{\ln 4} + 21$  B)  $x = -\frac{\ln 4}{3 \ln 2} - \frac{7}{3}$  C)  $x = \frac{\ln 2}{\ln 4} - 7$  D)  $x = \frac{3}{7} + \frac{\ln 4}{3 \ln 2}$ 
  
43)

Compute the average rate of change of f from x<sub>1</sub> to x<sub>2</sub>. Round your answer to two decimal places when appropriate. Interpret your result graphically.

44) 
$$f(x) = x^3 - 5x$$
,  $x_1 = 2$  and  $x_2 = 4$ 

A) -23; the slope of the line passing through (2, f(2)) and (4, f(4)) is -23.

- B) -7; the slope of the line passing through (2, f(2)) and (4, f(4)) is -7.
- C) 23; the slope of the line passing through (2, f(2)) and (4, f(4)) is 23.

D) 7; the slope of the line passing through (2, f(2)) and (4, f(4)) is 7.

If possible, find the matrix product of AB.

45) 
$$A = \begin{bmatrix} -1 & 3 \\ 4 & 2 \end{bmatrix}; B = \begin{bmatrix} -2 & 0 \\ -1 & 3 \end{bmatrix}$$

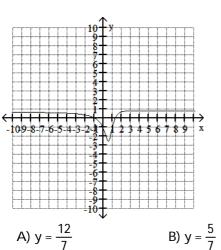
$$A) AB = \begin{bmatrix} 9 & -1 \\ 6 & -10 \end{bmatrix} B) AB = \begin{bmatrix} 2 & -6 \\ -3 & 3 \end{bmatrix} C) AB = \begin{bmatrix} 2 & 0 \\ -4 & 6 \end{bmatrix} D) AB = \begin{bmatrix} -1 & 9 \\ -10 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} -1 & 9 \\ -10 & 6 \end{bmatrix}$$

44)

Use the graph to determine whether the function is one-to-one.

| Use the graph to determine wheth<br>46)                                                                                               | ier the function is one         | -to-one.                                   |                                                      | 46)        |
|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------|------------------------------------------------------|------------|
| -10 -5 5                                                                                                                              | +++++><br>10 x                  |                                            |                                                      | , <u> </u> |
| A) No                                                                                                                                 |                                 | B) Yes                                     |                                                      |            |
| Find an equation that shifts the gr<br>47) $f(x) = x^4$ ; right 2 units, u<br>A) $y = -(x - 2)^4 + 4$<br>C) $y = (x + 2)^4 - 2$       |                                 | ted amounts.<br>B) y = (x -<br>D) y = - (x |                                                      | 47)        |
| Use the discriminant to determine<br>48) w <sup>2</sup> - 2w + 2 = 0<br>A) Two real solutions                                         |                                 | olutions.                                  | C) One real solution                                 | 48)        |
| Write the system of linear equation<br>49)                                                                                            | ons that the augmented          | d matrix represent                         | S.                                                   | 49)        |
| $\begin{array}{c} [0 \ 0 \ 1 \ 3] \\ A) \ x = -1 \\ y = -1 \\ z = -3 \end{array}$                                                     | B) x = 0<br>y = 2<br>z = 4      | C) $x = -2$<br>y = -2<br>z = 0             | D) x = 1<br>y = 1<br>z = 3                           |            |
| Find a symbolic representation fo<br>50) $f(x) = \sqrt{x - 9}$<br>A) $f^{-1}(x) = x^2 + 9$ , $x \ge$<br>C) $f^{-1}(x) = (x - 9)^2$    |                                 | B) Not a o<br>D) f <sup>-1</sup> (x) =     | ne-to-one function<br>= $\sqrt{x+9}$                 | 50)        |
| Find an equation that shifts the gr<br>51) $f(x) = x^2 + 2x - 7$ ; left 2 u<br>A) $y = (x + 2)^2 + 2(x + C) y = (x - 2)^2 + 2(x + C)$ | inits, down 18 units<br>2) - 25 | B) y = (x +                                | $2)^{2} + 2(x - 2) - 25$<br>$2)^{2} + 2(x - 2) + 25$ | 51)        |
| Find the median of the set of data<br>52) 3, 3, 17, 23, 42, 45, 48<br>A) 42                                                           | В) 23                           | C) 17                                      | D) 26                                                | 52)        |


Answer the question.

| 53) In the "Big Bucks" lot | tery game, a person is to p | ick 4 digits from 0 to 9 in c | orrect order. If a number | 53) |
|----------------------------|-----------------------------|-------------------------------|---------------------------|-----|
| can be repeated, how       | many ways are there to p    | lay the game?                 |                           |     |
| A) 262,144                 | B) 100,000                  | C) 1,048,576                  | D) 10,000                 |     |
|                            |                             |                               |                           |     |

Use the graph of f to determine the intervals where f is increasing and where f is decreasing.

54) 54) ż۹ -10 A) increasing: ( $(\infty, 0)$ ; decreasing (0,  $\infty$ ) B) increasing: ( $\infty$ , 5); decreasing (5,  $\infty$ ) C) increasing:  $(5, \infty)$ ; decreasing  $(\infty, 5)$ D) increasing:  $(\infty, \infty)$ ; decreasing: never Solve the system of linear equations. 55) 7x + 8y = -4055) 5x + 2y = -10A) (0, -5) B) (-1, -4) C) No solutions D) (0, -4) Use the discriminant to determine the number of real solutions. 56)  $(-3x - 5)^2 = -3$ 56) A) One real solution B) No real solutions C) Two real solutions Solve the problem. 57) Determine whether the ordered triple (7, 2, -5) is a solution of the system of equations. 57) 3x - 8y + z = 02x + 4y - 3z = 37-x + 2y - z = 2A) Yes B) No

Identify any horizontal asymptotes in the graph. 58)





Find a symbolic representation for  $f^{-1}(x)$ .

60)  $f(x) = (x - 9)^2$ A)  $f^{-1}(x) = \sqrt{x} + 9$ 

C) 
$$f^{-1}(x) = \frac{1}{\sqrt{x+9}}$$
 D)  $f^{-1}(x) = \sqrt{x+9}$ 

If possible, find the matrix product of AB.

61) 
$$A = \begin{bmatrix} 3 & -1 \\ 6 & 0 \end{bmatrix}; B = \begin{bmatrix} 0 & -1 \\ 2 & 6 \end{bmatrix}$$
  
A)  $AB = \begin{bmatrix} -2 & -9 \\ 0 & -6 \end{bmatrix}$   
B)  $AB = \begin{bmatrix} -6 & 0 \\ 42 & -2 \end{bmatrix}$   
C)  $AB = \begin{bmatrix} 0 & 1 \\ 12 & 0 \end{bmatrix}$   
D)  $AB = \begin{bmatrix} -9 & -2 \\ -6 & 0 \end{bmatrix}$ 

Specify the domain of the function.

62) 
$$f(x) = \sqrt{10 - x}$$
  
A) All real numbers  
C) x ≤ 10  
B) x >  $\sqrt{10}$   
D) x ≠ 10

C) y = 0

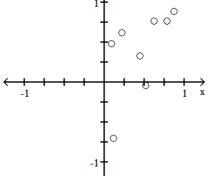
D) None

C) y = 9 D) y = -9

60)

B) Not a one-to-one function

x + 9

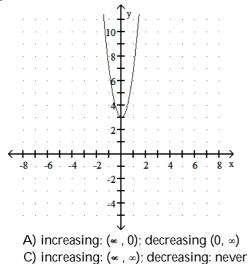

61)

62)

58)

Use the discriminant to determine the number of real solutions.

63) 
$$t^2 - 10t + 25 = 0$$
  
A) No real solutions B) One real solution C) Two real solution  
Solve the equation.  
64)  $|4m + 3| + 8 = 17$   
A) 2, -4 B)  $-\frac{3}{2}$ , 3 C)  $\frac{3}{2}$ , -3 D) No solution  
Find A<sup>-1</sup> without a calculator.  
65) A  $-\frac{0}{2} - \frac{1}{4} - \frac{1}{2} - \frac{1}{2}$ 

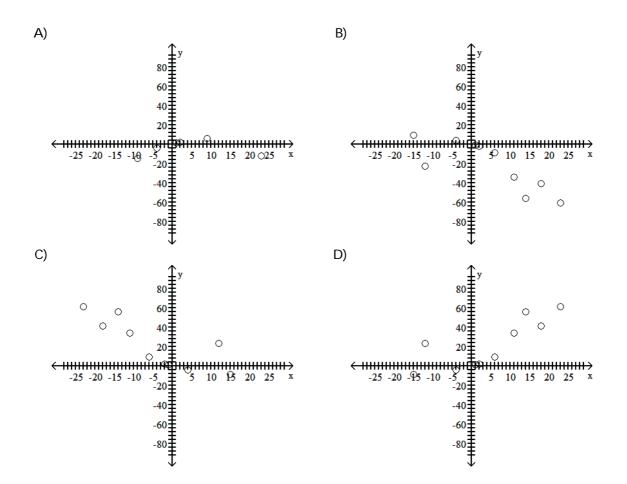



 $\begin{array}{c} \circ \\ -1 \\ \\ \end{array}$ 

Specify the domain of the function.

67)  $f(x) = \frac{\sqrt{x+5}}{(x+8)(x-4)}$ A)  $x \ge -5$ ,  $x \ne -8$ ,  $x \ne 4$ C) All real numbers B) x > 0D)  $x \ne -5$ ,  $x \ne -8$ ,  $x \ne 4$ 

Use the graph of f to determine the intervals where f is increasing and where f is decreasing. 68)



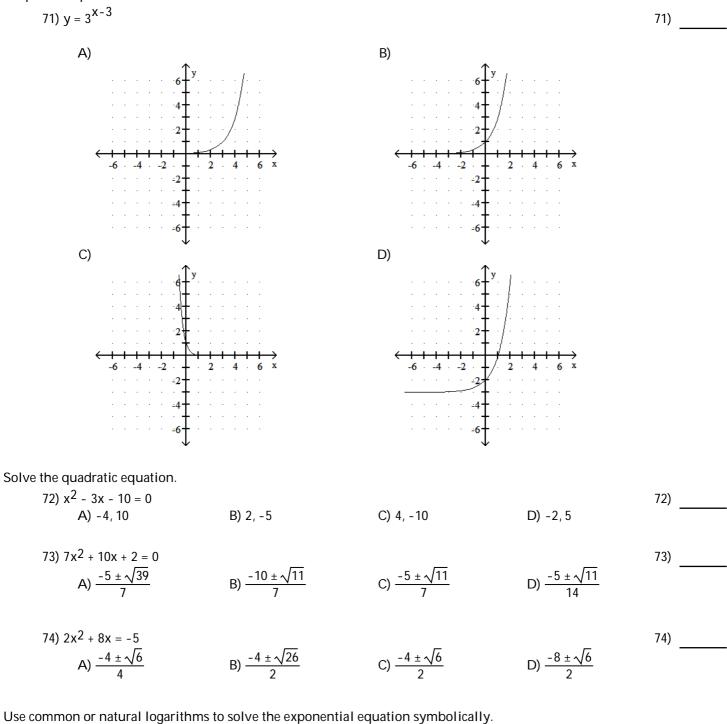

- B) increasing:  $(0, \infty)$ ; decreasing ( $\infty$ , 0)
- D) increasing: never; decreasing: (∞, ∞)

67)

68)

18




Find A<sup>-1</sup> without a calculator.

A<sup>-1</sup> without a calculator. 70) A =  $\begin{bmatrix} 4 & -3 \\ 0 & 3 \end{bmatrix}$ A) A<sup>-1</sup> =  $\begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ 0 & \frac{1}{3} \end{bmatrix}$ C)  $A^{-1} = \begin{bmatrix} \frac{1}{4} & -\frac{1}{4} \\ 0 & \frac{1}{3} \end{bmatrix}$ B)  $A^{-1} = \begin{bmatrix} 0 & \frac{1}{3} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix}$ 

19

69)

Graph the exponential function.



(75) 
$$4(1 + 2x) = 64$$
  
(A)  $x = \frac{\log 64}{2 \log 4} - \frac{1}{2}$  (B)  $x = \frac{\log 4}{\log 64} - 2$  (C)  $x = \frac{\log 64}{\log 4} - 2$  (D)  $x = 2 + \frac{\log 4}{\log 64}$ 

Solve the system of linear equations.

| 76) $x + 8y = 4$ |           |           |                 | 76) |
|------------------|-----------|-----------|-----------------|-----|
| -3x + 9y = -12   |           |           |                 |     |
| A) (5, -1)       | B) (4, 0) | C) (5, 4) | D) No solutions |     |

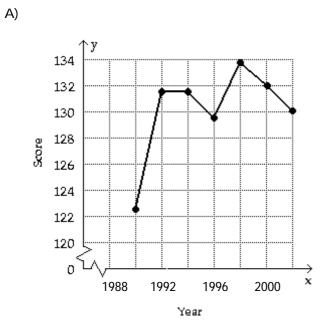
Use the given graph to find the x-intercepts.

| 77)                                                           |                            |                                             |                     | 77) |
|---------------------------------------------------------------|----------------------------|---------------------------------------------|---------------------|-----|
| $\leftarrow + + + + + + + + + + + + + + + + + + +$            | 4 6 8 10 x                 |                                             |                     |     |
| A) -4, 6                                                      | B) -6,4                    | C) -4, -6                                   | D) 4, 6             |     |
| Answer the question.<br>78) In how many ways ca<br>questions? | in you answer the questi   | ons on an exam that consis                  | sts of 6 true-false | 78) |
| A) 144                                                        | B) 0                       | C) 64                                       | D) 184              |     |
| Solve the inequality symbolica<br>79) 4x - 6≤3x - 4           | lly. Express the solutior  | set in interval notation.                   |                     | 79) |
| <b>A) (4</b> , ∞)                                             | <b>B)</b> [2, ∞)           | C) (-∞, 4)                                  | D) (-∞, 2]          |     |
| Solve the equation.<br>80)   k   - 4 = -1<br>A) -3            | B) -5, 5                   | C) 3, -3                                    | D) 3                | 80) |
| 2x - 2y - 3z = -16<br>4x - 3y + 3z = -3                       | ne ordered triple (-3, -1, | 4) is a solution of the syste               | m of equations.     | 81) |
| x + y - 5z = -24<br>A) No                                     |                            | B) Yes                                      |                     |     |
|                                                               |                            | has balls numbered 1 thro<br>by a 2 from B? | ugh 3. What is the  | 82) |
| A) 1/12                                                       | B) $\frac{11}{24}$         | C) $\frac{1}{8}$                            | D) <u>1</u> 24      |     |

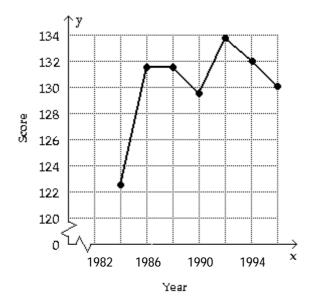
Determine the equation of the line described. Put the answer in the slope-intercept form, if possible.

83) Through (2, -1), perpendicular to -8x - 7y = -23

| A) $y = -\frac{2}{7}x - \frac{23}{7}$ | B) $y = -\frac{7}{8}x - \frac{11}{4}$ | C) $y = \frac{7}{8}x - \frac{11}{4}$ | D) $y = \frac{8}{7}x + \frac{8}{7}$ |
|---------------------------------------|---------------------------------------|--------------------------------------|-------------------------------------|
| 1 1                                   | 0 4                                   | 0 4                                  | 1 1                                 |

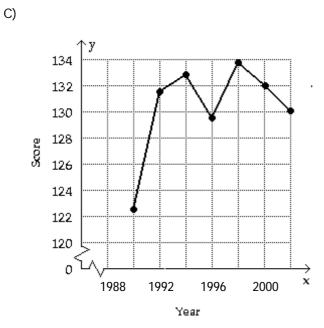

83) \_\_\_\_\_

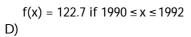
Solve the problem.

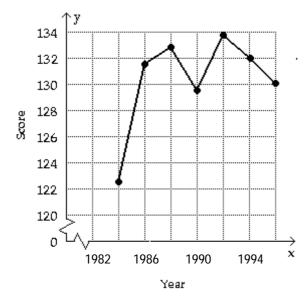

| <ul><li>84) Let f(x) compute the time in hours to travel x miles at</li><li>A) The miles traveled in x hours</li><li>C) The hours taken to travel x miles</li></ul> |                                             | <ul> <li>A2 miles per hour. What does f<sup>-1</sup>(x) compute?</li> <li>B) The hours taken to travel 42 miles</li> <li>D) The miles traveled in 42 hours</li> </ul> |                    | 84) |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----|--|
| Find the median of the set of dat<br>85) 63, 77, 212, 254, 423, 49                                                                                                  |                                             |                                                                                                                                                                       |                    | 85) |  |
| A) 254                                                                                                                                                              | B) 233                                      | C) 218.5                                                                                                                                                              | D) 212             |     |  |
| Solve the logarithmic equation s<br>86) log 8x = 8.7                                                                                                                |                                             |                                                                                                                                                                       |                    | 86) |  |
| A) x = 10 <sup>8.7/8</sup>                                                                                                                                          | B) $x = \frac{10^{8.7}}{8}$                 | C) $x = 10^{0.7}$                                                                                                                                                     | D) x = 696         |     |  |
| Find the median of the set of dat<br>87) 78, 15, 219, 163, 297, 24                                                                                                  |                                             |                                                                                                                                                                       |                    | 87) |  |
| A) 244                                                                                                                                                              | B) 219                                      | C) 180                                                                                                                                                                | D) 163             |     |  |
| Use the compound interest form<br>88) \$12,000 at 9% compou                                                                                                         |                                             | ue of the given amou                                                                                                                                                  | unt.               | 88) |  |
| A) \$21,882.19                                                                                                                                                      | B) \$22,374.54                              | C) \$21,936.47                                                                                                                                                        | D) \$10,374.54     | ,   |  |
| 89) \$1,000 at 5% compoun<br>A) \$1378.51                                                                                                                           | ded semiannually for 7 years<br>B) \$412.97 | C) \$1412.97                                                                                                                                                          | D) \$1407.10       | 89) |  |
|                                                                                                                                                                     | ,                                           |                                                                                                                                                                       | , · · · ·          |     |  |
| Solve the problem.<br>90) The table lists the aver                                                                                                                  | age composite scores on a nati              | onal entrance exam f                                                                                                                                                  | or selected years. | 90) |  |
| Year   1984 1986 198                                                                                                                                                | 38 1990 1992 1994 1996                      |                                                                                                                                                                       |                    |     |  |

(i) Make a line graph of the data.

(ii) If the graph represents a piecewise-linear function f, find a symbolic representation for the piece f located on the interval [1986, 1988].



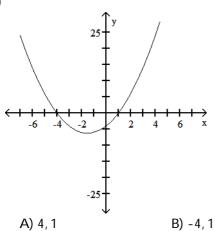


 $f(x) = 4.4x - 8615.7 \text{ if } 1990 \le x \le 1992$  B)




f(x) = 131.5 if 1986 ≤ x ≤ 1988

23








 $f(x) = 0.75x - 1359.5 \text{ if } 1986 \le x \le 1990$ 

24

Use the given graph to find the x-intercepts. 91)



Approximate f(x) to four decimal places. 92)  $f(x) = 3.6e^{-2.1x}$ , x = -1.9

| /_/ (//) | 0.00    | 1 |              |
|----------|---------|---|--------------|
| A)       | -0.0666 |   | B) -194.5976 |
|          |         |   |              |

C) 0.0666

D) -4, -1

D) 194.5976

C) -1, 4

Find a symbolic representation for  $f^{-1}(x)$ .

93) f(x) = 7x + 3

A)  $f^{-1}(x) = \frac{x}{7} - 3$ B)  $f^{-1}(x) = \frac{x-3}{7}$ C)  $f^{-1}(x) = \frac{x+3}{7}$ D) Not a one-to-one function

94)  $f(x) = x^3 - 3$ A)  $f^{-1}(x) = \sqrt[3]{x} + 3$ B) Not a one-to-one function C)  $f^{-1}(x) = \sqrt[3]{x} - 3$ D)  $f^{-1}(x) = \sqrt[3]{x} + 3$ 

Solve the problem.

95) Suppose the amount of a radioactive element remaining in a sample of 100 milligrams after x years 95) can be described by  $A(x) = 100e^{-0.01283x}$ . How much is remaining after 296 years? Round the answer to the nearest hundredth of a milligram.

A) 4459.76 milligrams

C) 0.02 milligrams

B) 379.77 milligramsD) 2.24 milligrams

91)

94)

92)

96) The charges for renting a moving van are \$55 for the first 20 miles and \$9 for each additional mile. Assume that a fraction of a mile is rounded up. (i) Determine the cost of driving the van 85 miles.
(ii) Find a symbolic representation for a function f that computes the cost of driving the van x miles, where 0 < x ≤ 100. (Hint: express f as a piecewise-constant function.)</li>

96) \_\_\_\_\_

| A) \$1000;                                                |                     |
|-----------------------------------------------------------|---------------------|
| ∫ 55                                                      | if 0 < x ≤ 20       |
| $f(x) = \begin{cases} 55\\ 55 + 9(x + 20) \end{cases}$    | if 20 < x ≤ 100     |
| B) \$5260;                                                |                     |
| ∫ 55x                                                     | if 0 < x ≤ 20       |
| $f(x) = \begin{cases} 55x \\ 55x + 9(x - 20) \end{cases}$ | if 20 < x ≤ 100     |
| C) \$640;                                                 |                     |
| ∫ 55                                                      | if 0 < x ≤ 20       |
| $f(x) = \begin{cases} 55\\ 55 + 9(x - 20) \end{cases}$    | if $20 < x \le 100$ |

| 97) In Country X, the average hourly wage in dollars from 1945 to 1995 can be modeled by                                                                 |                                          |                           |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------|--|--|
| $f(x) = \begin{cases} 0.073(x - 1945) + 0.38\\ 0.187(x - 1970) + 3.08 \end{cases}$                                                                       | if 1945 ≤ x < 1970<br>if 1970 ≤ x ≤ 1995 |                           |  |  |
|                                                                                                                                                          | hourly wages in 1950, 1970, and 199      | 90.                       |  |  |
| A) \$3.45, \$0.38, \$6.82                                                                                                                                | B) \$0.75, \$2.21, \$6.82                | C) \$0.75, \$3.08, \$6.82 |  |  |
| 98) Brand A soup contains 751 milligrams of sodium. Find a linear function f that computes the number of milligrams of sodium in x cans of Brand A soup. |                                          |                           |  |  |

A) f(x) = 751 + x B) f(x) = 751 C) f(x) = x - 751 D) f(x) = 751x

26

## Answer Key Testname: 1710 FINAL REVIEW 2022

1) B 2) D 3) A 4) D 5) B 6) A 7) D 8) D 9) D 10) D 11) B 12) A 13) B 14) D 15) C 16) D 17) D 18) A 19) B 20) D 21) C 22) B 23) B 24) B 25) D 26) C 27) C 28) A 29) C 30) C 31) D 32) B 33) B 34) B 35) B 36) D 37) A 38) D 39) D 40) C 41) B 42) D 43) B 44) C 45) D 46) B 47) B 48) B 49) D 50) A

## Answer Key Testname: 1710 FINAL REVIEW 2022

51) A 52) B 53) D 54) B 55) A 56) B 57) A 58) B 59) A 60) B 61) A 62) C 63) B 64) C 65) C 66) C 67) A 68) B 69) D 70) A 71) A 72) D 73) C 74) C 75) A 76) B 77) C 78) C 79) D 80) C 81) B 82) D 83) C 84) A 85) B 86) B 87) B 88) B 89) C 90) B 91) B 92) D 93) B 94) D 95) D 96) C 97) C