The Extremal Problem in Peg Solitaire on Graphs

Aaron D. Gray

East Tennessee State University

Twenty-Sixth Cumberland Conference on Combinatorics, Graph Theory, and Computing May 24, 2013

Introduction

Peg Solitaire Peg Solitaire on Graphs

Edge Addition

Examples Chart

The Extremal Problem

Stated Examined Current Bounds

Conclusion

Thanks References

Peg Solitaire Peg Solitaire on Graphs

Peg Solitaire

Peg solitaire is played on a board with numerous *holes. Pegs* are placed in every hole but one. A peg is removed by *jumping* over it with an adjacent peg into an adjacent hole. The game ends when no further moves are possible. The board is solved if only one peg remains. See Beasley [1] or Berlekamp et al [9] for more info.

Figure: A Typical Jump in Peg Solitaire

Edge Addition The Extremal Problem Conclusion Peg Solitaire Peg Solitaire on Graphs

Famous Examples

Edge Addition The Extremal Problem Conclusion Peg Solitaire Peg Solitaire on Graphs

Peg Solitaire on Graphs

- Beeler and Hoilman [6] generalized the game to arbitrary boards, which are treated as graphs in the combinatorial sense.
- We assume all graphs are finite, undirected, graphs with no loops or multiple edges.

Particularly, we assume all graphs are connected.

If there are pegs in vertices x and y and a hole in z, then x may jump over y into z provided that xy, yz ∈ E. The peg in y is then removed. We denote this jump with x · y · z.

Edge Addition The Extremal Problem Conclusion Peg Solitaire Peg Solitaire on Graphs

Solution States

- ► Graph G is solvable if there exists some vertex s ∈ G such that, starting with a hole in s, there exists an associated terminal state consisting of a single peg.
- ▶ Graph G is *freely solvable* if for all vertices s ∈ G, starting with a hole in s, there exists an associated terminal state consisting of a single peg.
- ► Graph G is k-solvable if there exists some vertex s ∈ G such that, starting with a hole in s, there exists an associated terminal state consisting of k nonadjacent pegs.
- ► Graph G is distance 2-solvable if there exists some vertex s ∈ G such that, starting with a hole in s, there exists an associated terminal state consisting of two pegs that are distance 2 apart.

Edge Addition The Extremal Problem Conclusion Peg Solitaire Peg Solitaire on Graphs

Useful Results

- The complete graph is freely solvable [6].
- ► The double star DS(L, R) is: (i) freely solvable iff L = R and R ≠ 1 (ii) solvable iff L ≤ R + 1 (iii) distance 2-solvable iff L = R + 2 (iv) (L - R)-solvable if L ≥ R + 3 [7].
- Double stars may be used to quickly eliminate pegs in an action called a *purge* [2].

Figure: The Double Star Purge on DS(5,3)

Examples Chart

The path on three vertices is solvable, at best, by [6]

However, the addition of an edge results in the complete graph on three vertices, which is freely solvable by [6].

Examples Chart

The star on four vertices is distance-2 solvable by [6].

However, the addition of an edge results in a graph that is solvable by [4].

Examples Chart

The cycle on five vertices is distance-2 solvable by [6].

However, the addition of an edge results in a chorded odd cycle. Chorded odd cycles C(2n + 1, 2) are freely solvable by [3].

Examples Chart

Edge Addition

Edge addition may...

- ...make an unsolvable graph solvable or even freely solvable.
- ...make a solvable graph freely solvable.

This seems to make sense, since the addition of an edge results in a greater number of possible jumps.

Examples Chart

Solvability Chart

Graphs on Seven Vertices									
Edges	6	7	8	9	10				
Percent Solvable	54.5%	87.9%	98.5%	100%	100%				

After nine edges, all graphs of order seven are at least solvable.

Graphs on Seven Vertices								
Edges	6	7	8	9	10			
Percent Freely Solvable	0%	53.1%	92.3%	98.1%	100%			

After 10 edges, all graphs of order seven are freely solvable.

Examples Chart

More Results

- All graphs on 4 vertices and 4 (5) edges are solvable (freely solvable).
- All graphs on 5 vertices and 6 (7) edges are solvable (freely solvable).
- All graphs on 6 vertices and 7 (8) edges are solvable (freely solvable).
- All graphs on 7 vertices and 9 (10) edges are solvable (freely solvable).

Stated Examined Current Bounds

The Extremal Problem

- What is the maximum number of edges in an unsolvable graph on n vertices?
- We denote this number $\tau(n)$.
- ► A graph G is edge k-critical if G is k-solvable, but the addition of any edge reduces the number of pegs at the end of the game.
- ▶ In particular, *G* is *edge critical* if *G* is not solvable, but the addition of any edge results in a solvable graph.
- We call an unsolvable (solvable but not freely solvable) graph G a critical graph if the addition of any edge to G results in a solvable (freely solvable) graph.

Stated Examined Current Bounds

Examined

Theorem

The generalization of the complete graph and the star, $K_n(n, 0, ..., 0)$, is a critical graph [2].

Figure: K₅(5,0,0,0,0)

Stated Examined Current Bounds

Stated Examined Current Bounds

Proof Overview

The remainder of the proof follows similarly.

A similar argument is used to show that $K_n(n+1, 0, ..., 0)$ is also a critical graph.

Stated Examined Current Bounds

Current Bounds [2]

- If *n* is odd, say n = 2k + 1, then $\tau(2k + 1) \ge \frac{k(k+1)}{2} + 1$.
- If *n* is even, say n = 2k, then $\tau(2k) \ge \frac{k(k+1)}{2}$.

Stated Examined Current Bounds

Current Bounds [2]

- If *n* is odd, say n = 2k + 1, then $\tau(2k + 1) \ge \frac{k(k+1)}{2} + 1$.
- If *n* is even, say n = 2k, then $\tau(2k) \ge \frac{k(k+1)}{2}$.
- These bounds are sharp.

Stated Examined Current Bounds

Current Bounds [2]

- If *n* is odd, say n = 2k + 1, then $\tau(2k + 1) \ge \frac{k(k+1)}{2} + 1$.
- If *n* is even, say n = 2k, then $\tau(2k) \ge \frac{k(k+1)}{2}$.
- These bounds are sharp.

• Trivially,
$$\tau \leq \frac{n(n-1)}{2}$$

- This current bound is approximately $\frac{n^2}{8}$.
- Conjecture (Beeler): $\tau(2k) = \frac{k(k+1)}{2}$.

Thanks References

Thanks

Thank you for attending.

May all your graphs be freely solvable!

Aaron D. Gray The Extremal Problem in Peg Solitaire

Thanks References

References

[1] John D. Beasley. The ins and outs of peg solitaire, volume 2 of Recreations in Mathematics. Oxford University Press, Eynsham, 1985.

[2] Robert A. Beeler and Aaron D. Gray. Extremal results for peg solitaire on graphs. In preparation.

[3] Robert A. Beeler and Aaron D. Gray. Freely solvable graphs in peg solitaire. In preparation. [4] Robert A. Beeler and Aaron D. Gray. Peg solitaire on graphs with seven vertices or less. *Congressus Numerantium*. Volume

211. pp. 151-159. 2012.

[5] Robert A. Beeler, Aaron D. Gray, and D. Paul Hoilman. Constructing solvable graphs in peg solitaire. *Bulletin of the ICA*. Volume 66, pp. 89-96, 2012.

[6] Robert A. Beeler and D. Paul Hoilman. Peg solitaire on graphs. Discrete Mathematics, 311:2198-2202, 2011.

[7] Robert A. Beeler and D. Paul Hoilman. Peg solitaire on the windmill and the double star graphs. The Australasian Journal of Combinatorics, 52:127-134, 2012.

[8] Robert A. Beeler and Tony K. Rodriguez. Fool's Solitaire on Graphs. To Appear in Involve.

[9] Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy. Winning ways for your mathematical plays. Vol. 2.

A K Peters Ltd., Natick, MA, second edition, 2003.

[10] Pictures from the internet and Aaron D. Gray.