Exact minimum d-degree thresholds for Hamilton cycles in k-uniform Hypergraphs

Jie Han
Department of Mathematics and Statistics Georgia State University

Cumberland Conference, Murfreesboro, TN
May 25, 2013

Joint work with Yi Zhao

Outline

(1) Introduction and Main results

(2) Proof Ideas

(3) Concluding Remarks and Open Problems

Warm up

- A k-uniform hypergraph (k-graph) H on $V: H \subset\binom{V}{k}$.
- Minimum d-degree: $\delta_{d}(H)=\min _{S \in\binom{v}{d}}\{\#$ of edges containing $S\}$
- An k-uniform ℓ-cycle is a k-graph which admits a cyclic ordering of the vertices such that each edge contains k consecutive vertices and two consecutive edges share ℓ vertices.
- Tight cycles: $\ell=k-1$; Loose cycles: $\ell=1$.
- Dirac '52: every graph G of order $n \geq 3$ with min-degree $\delta(G) \geq n / 2$ contains a Hamilton cycle.

Warm up

- A k-uniform hypergraph (k-graph) H on $V: H \subset\binom{V}{k}$.
- Minimum d-degree: $\delta_{d}(H)=\min _{S \in\binom{v}{d}}\{\#$ of edges containing $S\}$
- An k-uniform ℓ-cycle is a k-graph which admits a cyclic ordering of the vertices such that each edge contains k consecutive vertices
and two consecutive edges share ℓ vertices.
- Tight cycles: $\ell=k-1$; Loose cycles: $\ell=1$
- Dirac '52: every graph G of order $n \geq 3$ with min-degree
$\delta(G) \geq n / 2$ contains a Hamilton cycle.

Warm up

- A k-uniform hypergraph (k-graph) H on $V: H \subset\binom{V}{k}$.
- Minimum d-degree: $\delta_{d}(H)=\min _{S \in\binom{v}{d}}\{\#$ of edges containing $S\}$
- An k-uniform ℓ-cycle is a k-graph which admits a cyclic ordering of the vertices such that each edge contains k consecutive vertices and two consecutive edges share ℓ vertices.

Warm up

- A k-uniform hypergraph (k-graph) H on $V: H \subset\binom{V}{k}$.
- Minimum d-degree: $\delta_{d}(H)=\min _{S \in\binom{v}{d}}\{\#$ of edges containing $S\}$
- An k-uniform ℓ-cycle is a k-graph which admits a cyclic ordering of the vertices such that each edge contains k consecutive vertices and two consecutive edges share ℓ vertices.
- Tight cycles: $\ell=k-1$; Loose cycles: $\ell=1$.
- Dirac '52: every graph G of order $n \geq 3$ with min-degree
$\delta(G) \geq n / 2$ contains a Hamilton cycle.

Warm up

- A k-uniform hypergraph (k-graph) H on $V: H \subset\binom{V}{k}$.
- Minimum d-degree: $\delta_{d}(H)=\min _{S \in\binom{v}{d}}\{\#$ of edges containing $S\}$
- An k-uniform ℓ-cycle is a k-graph which admits a cyclic ordering of the vertices such that each edge contains k consecutive vertices and two consecutive edges share ℓ vertices.
- Tight cycles: $\ell=k-1$; Loose cycles: $\ell=1$.
- Dirac '52: every graph G of order $n \geq 3$ with min-degree $\delta(G) \geq n / 2$ contains a Hamilton cycle.

Dirac Type Results in Hypergraphs

- (Katona-Kierstead 99) $\delta_{k-1}(H) \geq\left(1-\frac{1}{2 k}\right) n+4-k-\frac{5}{2 k} \Rightarrow$ a tight H-cycle.
- (Rödl-Ruciński-Szemerédi 08) $\delta_{k-1}(H) \geq\left(\frac{1}{2}+o(1)\right) n \Rightarrow$ a tight H-cycle.
- (RRS 04, 11) For $k=3, \delta_{2}(H) \geq\left\lfloor\frac{n}{2}\right\rfloor \Rightarrow$ a tight H -cycle.
- (Kühn-Osthus 06) $k=3, \delta_{2}(H) \geq\left(\frac{1}{4}+o(1)\right) n \Rightarrow$ a loose H -cycle.
- (Keevash-K-Mycroft-O 10) $\delta_{k-1}(H) \geq\left(\frac{1}{2(k-1)}+o(1)\right) n \Rightarrow$ a loose H-cycle.
- (Hàn-Schacht 10) For $0<\ell<k / 2, \delta_{k-1}(H) \geq\left(\frac{1}{2(k-\ell)}+o(1)\right) n \Rightarrow$ a $\mathrm{H} \ell$-cycle.

Dirac Type Results in Hypergraphs (continued)

(1) (KMO 10) For $0<\ell<k$ such that $k-\ell \nmid k$,

$$
\delta_{k-1}(H) \geq\left(\frac{1}{\left\lceil\frac{k}{k-\ell}\right\rceil(k-\ell)}+o(1)\right) n
$$

$\Rightarrow \mathrm{aH} \ell$-cycle.
(2) (Buss-H-S 12) For $k=3, \delta_{1}(H) \geq\left(\frac{7}{16}+o(1)\right)\binom{n}{2} \Rightarrow$ a loose H-cycle.

Main result 1

Theorem 1 (H. Yi Zhao 13+)

$\exists n_{0}$ such that the following holds. Suppose that H is a 3-graph on $n>n_{0}$ with $n \in 2 \mathbb{N}$ and

$$
\delta_{1}(H) \geq\binom{ n-1}{2}-\binom{\left\lfloor\frac{3}{4} n\right\rfloor}{ 2}+c
$$

where $c=2$ if $4 \mid n, c=1$ if $4 \nmid n$. Then H contains a loose H-cycle.

Main result 2

Theorem 2 (H. Yi Zhao 13+)

For $k \geq 3$ and $0<\ell<k$ such that $k-\ell \nmid k, \exists n_{0}$ such that the following holds. Suppose that H is a k-graph on $n>n_{0}$ with $n \in(k-\ell) \mathbb{N}$ and

$$
\delta_{k-1}(H) \geq \frac{1}{\left\lceil\frac{k}{k-\ell}\right\rceil(k-\ell)} n,
$$

Then H contains a $\mathrm{H} \ell$-cycle.

Lower Bound Construction

The following constructions show that Theorem 1 and 2 are best possible ($k=3$).

Absorbing Lemma

Lemma 3 (Absorbing Lemma, B-H-S, 12)

$\forall \gamma>0, \exists n_{0}$ such that: $\forall 3$-graph H on $n>n_{0}$ vertices with $\delta_{1}(H) \geq \frac{13}{32}\binom{n}{2}, \exists$ a loose path \mathcal{P} with $|V(\mathcal{P})| \leq \gamma n$ such that $\forall U \subset V \backslash V(\mathcal{P})$ of size $\leq \gamma^{3} n$ and $|U| \in 2 \mathbb{N}, \exists$ a loose path \mathcal{Q} with $V(\mathcal{Q})=V(\mathcal{P}) \cup U$ and \mathcal{P} and \mathcal{Q} have exactly the same ends.

Absorbing Lemma

Lemma 3 (Absorbing Lemma, B-H-S, 12)

$\forall \gamma>0$, $\exists n_{0}$ such that: $\forall 3$-graph H on $n>n_{0}$ vertices with $\delta_{1}(H) \geq \frac{13}{32}\binom{n}{2}, \exists$ a loose path \mathcal{P} with $|V(\mathcal{P})| \leq \gamma n$ such that $\forall U \subset V \backslash V(\mathcal{P})$ of size $\leq \gamma^{3} n$ and $|U| \in 2 \mathbb{N}, \exists$ loose path \mathcal{Q} with $V(\mathcal{Q})=V(\mathcal{P}) \cup U$ and \mathcal{P} and \mathcal{Q} have exactly the same ends.

Absorbing Lemma

Lemma 3 (Absorbing Lemma, B-H-S, 12)
$\forall \gamma>0$, $\exists n_{0}$ such that: $\forall 3$-graph H on $n>n_{0}$ vertices with $\delta_{1}(H) \geq \frac{13}{32}\binom{n}{2}, \exists$ a loose path \mathcal{P} with $|V(\mathcal{P})| \leq \gamma n$ such that $\forall U \subset V \backslash V(\mathcal{P})$ of size $\leq \gamma^{3} n$ and $|U| \in 2 \mathbb{N}, \exists$ a loose path \mathcal{Q} with $V(\mathcal{Q})=V(\mathcal{P}) \cup U$ and \mathcal{P} and \mathcal{Q} have exactly the same ends.

Reservoir lemma

Lemma 4 (Reservoir lemma, B-H-S, 12)

$\forall 1 / 4>\gamma>0, \exists n_{0}$ such that: \forall 3-graph H on $n>n_{0}$ vertices with $\delta_{1}(H) \geq(1 / 4+\gamma)\binom{n}{2}, \exists R \subset V(H)$ with $|R| \leq \gamma n$ and: $\forall\left(a_{i}, b_{i}\right)_{i \in[k]}$ consisting of $k \leq \gamma^{3} n / 12$ mutually disjoint pairs of vertices, $\exists\left\{u_{i}, v_{i}, w_{i}\right\}_{i \in[k]}$ connecting $\left(a_{i}, b_{i}\right)_{i \in[k]}$ which contains vertices from R only.

Reservoir lemma

Lemma 4 (Reservoir lemma, B-H-S, 12)

$\forall 1 / 4>\gamma>0$, $\exists n_{0}$ such that: \forall 3-graph H on $n>n_{0}$ vertices with $\delta_{1}(H) \geq(1 / 4+\gamma)\binom{n}{2}, \exists R \subset V(H)$ with $|R| \leq \gamma n$ and: $\forall\left(a_{i}, b_{i}\right)_{i \in[k]}$ consisting of $k \leq \gamma^{3} n / 12$ mutually disjoint pairs of vertices, $\exists\left\{u_{i}, v_{i}, w_{i}\right\}_{i \in[k]}$ connecting $\left(a_{i}, b_{i}\right)_{i \in[k]}$ which contains vertices from R only.

Reservoir lemma

Lemma 4 (Reservoir lemma, B-H-S, 12)

$\forall 1 / 4>\gamma>0$, $\exists n_{0}$ such that: \forall 3-graph H on $n>n_{0}$ vertices with $\delta_{1}(H) \geq(1 / 4+\gamma)\binom{n}{2}, \exists R \subset V(H)$ with $|R| \leq \gamma n$ and: $\forall\left(a_{i}, b_{i}\right)_{i \in[k]}$ consisting of $k \leq \gamma^{3} n / 12$ mutually disjoint pairs of vertices, $\exists\left\{u_{i}, v_{i}, w_{i}\right\}_{i \in[k]}$ connecting $\left(a_{i}, b_{i}\right)_{i \in[k]}$ which contains vertices from R only.

Outline for the proof of the asymptotic result

Buss-Hàn-Schacht: $\delta_{1}(H) \geq \frac{7}{16}\binom{n}{2}+o\left(n^{2}\right) \Rightarrow$ loose H . cycle.
(1) Apply the Absorbing Lemma to find an reasonably long absorbing path $P=v_{1} \ldots v_{p}$.
(2) Apply the Reservoir Lemma to find a smaller reservoir set R in $(V \backslash V(P)) \cup\left\{v_{1}, v_{p}\right\}$.
(3) Cover the most vertices of $V \backslash(V(P) \cup R)$ with constant many vertex-disjoint loose paths $\left\{P_{i}\right\}$.
(4) Connect all the paths $\left\{P_{i}\right\}$ and P by using the vertices of R.
(5) Absorb the vertices left in step 3 and unused vertices in R by P.

Outline for the proof of the asymptotic result

Buss-Hàn-Schacht: $\delta_{1}(H) \geq \frac{7}{16}\binom{n}{2}+o\left(n^{2}\right) \Rightarrow$ loose H . cycle.
(1) Apply the Absorbing Lemma to find an reasonably long absorbing path $P=v_{1} \ldots v_{p}$.
(3) Apply the Reservoir Lemma to find a smaller reservoir set R in $(V \backslash V(P)) \cup\left\{v_{1}, v_{p}\right\}$.
(0) Cover the most vertices of $V \backslash(V(P) \cup R)$ with constant many vertex-disjoint loose paths $\left\{P_{i}\right\}$

- Connect all the paths $\left\{P_{i}\right\}$ and P by using the vertices of R.
(0) Absorb the vertices left in step 3 and unused vertices in R by P.

Outline for the proof of the asymptotic result

Buss-Hàn-Schacht: $\delta_{1}(H) \geq \frac{7}{16}\binom{n}{2}+o\left(n^{2}\right) \Rightarrow$ loose H . cycle.
(1) Apply the Absorbing Lemma to find an reasonably long absorbing path $P=v_{1} \ldots v_{p}$.
(2) Apply the Reservoir Lemma to find a smaller reservoir set R in $(V \backslash V(P)) \cup\left\{v_{1}, v_{p}\right\}$.
© Cover the most vertices of $V \backslash(V(P) \cup R)$ with constant many vertex-disjoint loose paths $\left\{P_{i}\right\}$
(9) Connect all the paths $\left\{P_{i}\right\}$ and P by using the vertices of R.
(0) Absorb the vertices left in step 3 and unused vertices in R by F

Outline for the proof of the asymptotic result

Buss-Hàn-Schacht: $\delta_{1}(H) \geq \frac{7}{16}\binom{n}{2}+o\left(n^{2}\right) \Rightarrow$ loose H . cycle.
(1) Apply the Absorbing Lemma to find an reasonably long absorbing path $P=v_{1} \ldots v_{p}$.
(2) Apply the Reservoir Lemma to find a smaller reservoir set R in $(V \backslash V(P)) \cup\left\{v_{1}, v_{p}\right\}$.
(3) Cover the most vertices of $V \backslash(V(P) \cup R)$ with constant many vertex-disjoint loose paths $\left\{P_{i}\right\}$.
(Connect all the paths $\left\{P_{i}\right\}$ and P by using the vertices of R.
(0) Absorb the vertices left in step 3 and unused vertices in R by P.

Outline for the proof of the asymptotic result

Buss-Hàn-Schacht: $\delta_{1}(H) \geq \frac{7}{16}\binom{n}{2}+o\left(n^{2}\right) \Rightarrow$ loose H . cycle.
(1) Apply the Absorbing Lemma to find an reasonably long absorbing path $P=v_{1} \ldots v_{p}$.
(2) Apply the Reservoir Lemma to find a smaller reservoir set R in $(V \backslash V(P)) \cup\left\{v_{1}, v_{p}\right\}$.
(3) Cover the most vertices of $V \backslash(V(P) \cup R)$ with constant many vertex-disjoint loose paths $\left\{P_{i}\right\}$.
(9) Connect all the paths $\left\{P_{i}\right\}$ and P by using the vertices of R.

Outline for the proof of the asymptotic result

Buss-Hàn-Schacht: $\delta_{1}(H) \geq \frac{7}{16}\binom{n}{2}+o\left(n^{2}\right) \Rightarrow$ loose H . cycle.
(1) Apply the Absorbing Lemma to find an reasonably long absorbing path $P=v_{1} \ldots v_{p}$.
(2) Apply the Reservoir Lemma to find a smaller reservoir set R in $(V \backslash V(P)) \cup\left\{v_{1}, v_{p}\right\}$.
(3) Cover the most vertices of $V \backslash(V(P) \cup R)$ with constant many vertex-disjoint loose paths $\left\{P_{i}\right\}$.
(9) Connect all the paths $\left\{P_{i}\right\}$ and P by using the vertices of R.
(5) Absorb the vertices left in step 3 and unused vertices in R by P.

Outline in pictures

New ingredients

- Separate extremal and non-extremal cases: H is Δ-extremal if $\exists B \subset V$ of size $\left\lfloor\frac{3 n}{4}\right\rfloor$ s.t. $e(B) \leq \Delta n^{3}$. if $\delta_{1}(H) \geq\left(\frac{7}{16}-\gamma\right)\binom{n}{2}$, then all but at most αn vertices of H can be covered by at most p vertex-disjoint loose paths, unless H is \triangle-extremal.

New ingredients

- Separate extremal and non-extremal cases: H is Δ-extremal if $\exists B \subset V$ of size $\left\lfloor\frac{3 n}{4}\right\rfloor$ s.t. $e(B) \leq \Delta n^{3}$.
- Prove a stronger Path Tiling Lemma: $\forall \gamma, \alpha>0, \exists p \in \mathbb{N}, \Delta>0$ s.t. if $\delta_{1}(H) \geq\left(\frac{7}{16}-\gamma\right)\binom{n}{2}$, then all but at most αn vertices of H can be covered by at most p vertex-disjoint loose paths, unless H is Δ-extremal.

Tools for the proof of the Path Tiling Lemma

- Fact: a loose path is 3-partite on parts A, B, C s.t. $|A|:|B|:|C| \approx 1: 2: 1$. $123212321232123 \cdots$
3-graph Y on $\{w, x, y, z\}$ with edges $w x y, x y z$.
- Lemma: if a 3-partite 3-graph with 2 parts of size m and one part of size $2 m$ is ϵ-regular, then there is one loose path covering the most of its vertices.

Tools for the proof of the Path Tiling Lemma

- Fact: a loose path is 3-partite on parts A, B, C s.t.
$|A|:|B|:|C| \approx 1: 2: 1$.
$123212321232123 \ldots$
- 3-graph Y on $\{w, x, y, z\}$ with edges $w x y, x y z$.
- Lemma: if a 3-partite 3-graph with 2 parts of size m and one part of size $2 m$ is ϵ-regular, then there is one loose path covering the most of its vertices.

Tools for the proof of the Path Tiling Lemma

- Fact: a loose path is 3-partite on parts A, B, C s.t.
$|A|:|B|:|C| \approx 1: 2: 1$. $123212321232123 \ldots$
- 3-graph Y on $\{w, x, y, z\}$ with edges $w x y, x y z$.

Lemma: if a 3-partite 3-graph with 2 parts of size m and one part of size $2 m$ is ϵ-regular, then there is one loose path covering the most of its vertices.

Tools for the proof of the Path Tiling Lemma

- Fact: a loose path is 3-partite on parts A, B, C s.t.
$|A|:|B|:|C| \approx 1: 2: 1$. $123212321232123 \ldots$
- 3-graph Y on $\{w, x, y, z\}$ with edges $w x y, x y z$.
- Lemma: if a 3-partite 3-graph with 2 parts of size m and one part of size $2 m$ is ϵ-regular, then there is one loose path covering the most of its vertices.

How to prove the Path Tiling Lemma

(1) Apply the weak Regularity Lemma to H and obtain the cluster 3-graph H^{\prime}.
(2) Show that H^{\prime} contains an almost Y-tiling unless H^{\prime} is extremal.
(3) Cut each copy of Y into (regular) unbalanced triples.

How to prove the Path Tiling Lemma

(1) Apply the weak Regularity Lemma to H and obtain the cluster 3-graph H^{\prime}.
(2) Show that H^{\prime} contains an almost Y-tiling unless H^{\prime} is extremal.
(3) Cut each copy of Y into (regular) unbalanced triples.

How to prove the Path Tiling Lemma

(1) Apply the weak Regularity Lemma to H and obtain the cluster 3-graph H^{\prime}.
(2) Show that H^{\prime} contains an almost Y-tiling unless H^{\prime} is extremal.
(3) Cut each copy of Y into (regular) unbalanced triples.

How to prove the Path Tiling Lemma

(1) Apply the weak Regularity Lemma to H and obtain the cluster 3-graph H^{\prime}.
(2) Show that H^{\prime} contains an almost Y-tiling unless H^{\prime} is extremal.
(3) Cut each copy of Y into (regular) unbalanced triples.

Proof Ideas of Y-tiling

For a maximal Y-tiling $\left\{Y_{1}, Y_{2}, \cdots, Y_{m}\right\}$ in K, let V^{\prime} be set of vertices covered by some copy of Y and $U=V \backslash V^{\prime}$. Assume that $|U| \geq 2^{20}$. Goal: find a sparse set of size $\left\lfloor\frac{3}{4} n\right\rfloor$.
(1) $e(U) \leq \frac{1}{3}\binom{|U|}{2}$.
(2) $e\left(U U V^{\prime}\right) \leq(1+o(1)) m\binom{|U|}{2}$. (edges stand for the link graph of u). In this case we say that v covers $\left\{Y_{j}, u\right\}$.
(4) Pick C as the set of the vertices who cover many $\left\{Y_{j}, u\right\}$. Show that $|C| \leq m<n / 4$.

Proof Ideas of Y-tiling

For a maximal Y-tiling $\left\{Y_{1}, Y_{2}, \cdots, Y_{m}\right\}$ in K, let V^{\prime} be set of vertices covered by some copy of Y and $U=V \backslash V^{\prime}$. Assume that $|U| \geq 2^{20}$. Goal: find a sparse set of size $\left\lfloor\frac{3}{4} n\right\rfloor$.
(1) $e(U) \leq \frac{1}{3}\binom{|U|}{2}$.
(2) $e\left(U U V^{\prime}\right) \leq(1+o(1)) m\binom{|U|}{2}$.
(8) Almost all systems $\left\{Y_{i}, Y_{j}, u\right\}$ are stable - as shown in the figure (edges stand for the link graph of u). In this case we say that v covers
(4) Pick C as the set of the vertices who cover many $\left\{Y_{j}, u\right\}$. Show that $|C| \leq m<n / 4$.
(5) $H[V \backslash C\rceil$ is sparse.

Proof Ideas of Y-tiling

For a maximal Y-tiling $\left\{Y_{1}, Y_{2}, \cdots, Y_{m}\right\}$ in K, let V^{\prime} be set of vertices covered by some copy of Y and $U=V \backslash V^{\prime}$. Assume that $|U| \geq 2^{20}$. Goal: find a sparse set of size $\left\lfloor\frac{3}{4} n\right\rfloor$.
(1) $e(U) \leq \frac{1}{3}\binom{U}{2}$.
(2) $e\left(U U V^{\prime}\right) \leq(1+o(1)) m\binom{|U|}{2}$.
are stable - as shown in the figure (edges stand for the link graph of u). In this case we say that v
(1) Pick C as the set of the vertices who cover many $\left\{Y_{j}, u\right\}$. Show
(3) $H[V \backslash C]$ is sparse.

Proof Ideas of Y-tiling

For a maximal Y-tiling $\left\{Y_{1}, Y_{2}, \cdots, Y_{m}\right\}$ in K, let V^{\prime} be set of vertices covered by some copy of Y and $U=V \backslash V^{\prime}$. Assume that $|U| \geq 2^{20}$. Goal: find a sparse set of size $\left\lfloor\frac{3}{4} n\right\rfloor$.
(1) $e(U) \leq \frac{1}{3}\binom{U U}{2}$.
(2) $e\left(U U V^{\prime}\right) \leq(1+o(1)) m\binom{|U|}{2}$.
(3) Almost all systems $\left\{Y_{i}, Y_{j}, u\right\}$ are stable - as shown in the figure (edges stand for the link graph of u). In this case we say that v covers $\left\{Y_{j}, u\right\}$.

- Pick C as the set of the vertices who cover many $\left\{Y_{j}, u\right\}$. Show
(3) $H[V \backslash C]$ is sparse.

Proof Ideas of Y-tiling

For a maximal Y-tiling $\left\{Y_{1}, Y_{2}, \cdots, Y_{m}\right\}$ in K, let V^{\prime} be set of vertices covered by some copy of Y and $U=V \backslash V^{\prime}$. Assume that $|U| \geq 2^{20}$. Goal: find a sparse set of size $\left\lfloor\frac{3}{4} n\right\rfloor$.
(1) $e(U) \leq \frac{1}{3}\binom{|U|}{2}$.
(2) $e\left(U U V^{\prime}\right) \leq(1+o(1)) m\binom{|U|}{2}$.
(3) Almost all systems $\left\{Y_{i}, Y_{j}, u\right\}$ are stable - as shown in the figure (edges stand for the link graph of u). In this case we say that v covers $\left\{Y_{j}, u\right\}$.
(4) Pick C as the set of the vertices who cover many $\left\{Y_{j}, u\right\}$. Show that $|C| \leq m<n / 4$.
(5) $H[V \backslash C]$ is sparse.

Proof Ideas of Y-tiling

For a maximal Y-tiling $\left\{Y_{1}, Y_{2}, \cdots, Y_{m}\right\}$ in K, let V^{\prime} be set of vertices covered by some copy of Y and $U=V \backslash V^{\prime}$. Assume that $|U| \geq 2^{20}$. Goal: find a sparse set of size $\left\lfloor\frac{3}{4} n\right\rfloor$.
(1) $e(U) \leq \frac{1}{3}\binom{|U|}{2}$.
(2) $e\left(U U V^{\prime}\right) \leq(1+o(1)) m\binom{|U|}{2}$.
(3) Almost all systems $\left\{Y_{i}, Y_{j}, u\right\}$ are stable - as shown in the figure (edges stand for the link graph of u). In this case we say that v covers $\left\{Y_{j}, u\right\}$.
(4) Pick C as the set of the vertices who cover many $\left\{Y_{j}, u\right\}$. Show that $|C| \leq m<n / 4$.
(5) $H[V \backslash C]$ is sparse.

Concluding Remarks and Open Problems

Remarks:

- This proof may be extended to finding the $(k-2)$-degree threshold of loose Hamilton cycles in k-graphs.
- The proof for our other theorem is similar.

Open problems:

- Determine the codegree thresholds exactly when k - ℓ divides k.
- Other cases, e.g., finding the vertex-degree threshold for tight H. cycles in 3-graphs.

Concluding Remarks and Open Problems

Remarks:

- This proof may be extended to finding the $(k-2)$-degree threshold of loose Hamilton cycles in k-graphs.
- The proof for our other theorem is similar.

Open problems:

- Determine the codegree thresholds exactly when $k-\ell$ divides k.
- Other cases, e.a., findina the vertex-dearee threshold for tiaht H . cycles in 3-graphs.

Concluding Remarks and Open Problems

Remarks:

- This proof may be extended to finding the ($k-2$)-degree threshold of loose Hamilton cycles in k-graphs.
- The proof for our other theorem is similar.

Open problems:

- Determine the codegree thresholds exactly when $k-\ell$ divides k.
- Other cases, e.g., finding the vertex-degree threshold for tight H . cycles in 3 -graphs.

Concluding Remarks and Open Problems

Remarks:

- This proof may be extended to finding the ($k-2$)-degree threshold of loose Hamilton cycles in k-graphs.
- The proof for our other theorem is similar.

Open problems:

- Determine the codegree thresholds exactly when $k-\ell$ divides k.
- Other cases, e.g., finding the vertex-degree threshold for tight H. cycles in 3-graphs.

