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Warm up

A k -uniform hypergraph (k -graph) H on V : H ⊂
(V

k

)

.

Minimum d-degree: δd(H) = minS∈(V
d)
{# of edges containing S}

An k -uniform ℓ-cycle is a k -graph which admits a cyclic ordering of
the vertices such that each edge contains k consecutive vertices
and two consecutive edges share ℓ vertices.

Tight cycles: ℓ = k − 1; Loose cycles: ℓ = 1.

Dirac ’52: every graph G of order n ≥ 3 with min-degree
δ(G) ≥ n/2 contains a Hamilton cycle.
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Dirac Type Results in Hypergraphs

(Katona-Kierstead 99) δk−1(H) ≥ (1 − 1
2k )n + 4 − k − 5

2k ⇒ a tight
H-cycle.

(Rödl-Ruciński-Szemerédi 08) δk−1(H) ≥ (1
2 + o(1))n ⇒ a tight

H-cycle.

(RRS 04, 11) For k = 3, δ2(H) ≥ ⌊n
2⌋ ⇒ a tight H-cycle.

(Kühn-Osthus 06) k = 3, δ2(H) ≥ (1
4 + o(1))n ⇒ a loose H-cycle.

(Keevash-K-Mycroft-O 10) δk−1(H) ≥ ( 1
2(k−1) + o(1))n ⇒ a loose

H-cycle.

(Hàn-Schacht 10) For 0 < ℓ < k/2, δk−1(H) ≥ ( 1
2(k−ℓ) + o(1))n ⇒

a H ℓ-cycle.
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Dirac Type Results in Hypergraphs (continued)

1 (KMO 10) For 0 < ℓ < k such that k − ℓ ∤ k ,

δk−1(H) ≥

(

1

⌈ k
k−ℓ

⌉(k − ℓ)
+ o(1)

)

n

⇒ a H ℓ-cycle.
2 (Buss-H-S 12) For k = 3, δ1(H) ≥ ( 7

16 + o(1))
(n

2

)

⇒ a loose
H-cycle.
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Main result 1

Theorem 1 (H. Yi Zhao 13+)

∃n0 such that the following holds. Suppose that H is a 3-graph on
n > n0 with n ∈ 2N and

δ1(H) ≥

(

n − 1
2

)

−

(

⌊3
4n⌋
2

)

+ c,

where c = 2 if 4 | n, c = 1 if 4 ∤ n. Then H contains a loose H-cycle.
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Main result 2

Theorem 2 (H. Yi Zhao 13+)

For k ≥ 3 and 0 < ℓ < k such that k − ℓ ∤ k, ∃n0 such that the following
holds. Suppose that H is a k-graph on n > n0 with n ∈ (k − ℓ)N and

δk−1(H) ≥
1

⌈ k
k−ℓ

⌉(k − ℓ)
n,

Then H contains a H ℓ-cycle.
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Lower Bound Construction

The following constructions show that Theorem 1 and 2 are best
possible (k = 3).

H0 H1

n
4 − 1

3n
4 + 1
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Absorbing Lemma

Lemma 3 (Absorbing Lemma, B-H-S, 12)

∀γ > 0, ∃n0 such that: ∀ 3-graph H on n > n0 vertices with
δ1(H) ≥ 13

32

(n
2

)

, ∃ a loose path P with |V (P)| ≤ γn such that
∀U ⊂ V \ V (P) of size ≤ γ3n and |U| ∈ 2N, ∃ a loose path Q with
V (Q) = V (P) ∪ U and P and Q have exactly the same ends.
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Reservoir lemma

Lemma 4 (Reservoir lemma, B-H-S, 12)

∀1/4 > γ > 0, ∃n0 such that: ∀ 3-graph H on n > n0 vertices with
δ1(H) ≥ (1/4 + γ)

(n
2

)

, ∃R ⊂ V (H) with |R| ≤ γn and: ∀(ai , bi)i∈[k ]

consisting of k ≤ γ3n/12 mutually disjoint pairs of vertices,
∃{ui , vi ,wi}i∈[k ] connecting (ai , bi)i∈[k ] which contains vertices from R
only.
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Outline for the proof of the asymptotic result

Buss-Hàn-Schacht: δ1(H) ≥ 7
16

(n
2

)

+ o(n2) ⇒ loose H. cycle.

1 Apply the Absorbing Lemma to find an reasonably long absorbing
path P = v1 . . . vp .

2 Apply the Reservoir Lemma to find a smaller reservoir set R in
(V \ V (P)) ∪ {v1, vp}.

3 Cover the most vertices of V \ (V (P) ∪ R) with constant many
vertex-disjoint loose paths {Pi}.

4 Connect all the paths {Pi} and P by using the vertices of R.
5 Absorb the vertices left in step 3 and unused vertices in R by P.
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Outline in pictures

P
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New ingredients

Separate extremal and non-extremal cases: H is ∆-extremal if
∃B ⊂ V of size ⌊3n

4 ⌋ s.t. e(B) ≤ ∆n3.

Prove a stronger Path Tiling Lemma: ∀γ, α > 0, ∃p ∈ N, ∆ > 0 s.t.
if δ1(H) ≥ ( 7

16 − γ)
(n

2

)

, then all but at most αn vertices of H can be
covered by at most p vertex-disjoint loose paths, unless H is
∆-extremal.
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Tools for the proof of the Path Tiling Lemma

Fact: a loose path is 3-partite on parts A,B,C s.t.
|A| : |B| : |C| ≈ 1 : 2 : 1.
1 2 3 2 1 2 3 2 1 2 3 2 1 2 3· · ·

3-graph Y on {w , x , y , z} with edges wxy , xyz.

Lemma: if a 3-partite 3-graph with 2 parts of size m and one part
of size 2m is ǫ-regular, then there is one loose path covering the
most of its vertices.
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How to prove the Path Tiling Lemma

1 Apply the weak Regularity Lemma to H and obtain the cluster
3-graph H ′.

2 Show that H ′ contains an almost Y -tiling unless H ′ is extremal.

3 Cut each copy of Y into (regular) unbalanced triples.
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How to prove the Path Tiling Lemma

1 Apply the weak Regularity Lemma to H and obtain the cluster
3-graph H ′.

2 Show that H ′ contains an almost Y -tiling unless H ′ is extremal.

3 Cut each copy of Y into (regular) unbalanced triples.

1 1/2 1/2

11/21/2

Jie Han (Georgia State University) Hypergraphs Hamilton May 25, 2013 15 / 17



Proof Ideas of Y -tiling

For a maximal Y -tiling {Y1,Y2, · · · ,Ym} in K , let V ′ be set of vertices
covered by some copy of Y and U = V \ V ′. Assume that |U| ≥ 220.
Goal: find a sparse set of size ⌊3

4n⌋.

1 e(U) ≤ 1
3

(|U|
2

)

.

2 e(UUV ′) ≤ (1 + o(1))m
(|U|

2

)

.
3 Almost all systems {Yi ,Yj , u} are stable – as shown in the figure

(edges stand for the link graph of u). In this case we say that v
covers {Yj , u}.

4 Pick C as the set of the vertices who cover many {Yj , u}. Show
that |C| ≤ m < n/4.

5 H[V \ C] is sparse.

Jie Han (Georgia State University) Hypergraphs Hamilton May 25, 2013 16 / 17



Proof Ideas of Y -tiling

For a maximal Y -tiling {Y1,Y2, · · · ,Ym} in K , let V ′ be set of vertices
covered by some copy of Y and U = V \ V ′. Assume that |U| ≥ 220.
Goal: find a sparse set of size ⌊3

4n⌋.

1 e(U) ≤ 1
3

(|U|
2

)

.

2 e(UUV ′) ≤ (1 + o(1))m
(|U|

2

)

.
3 Almost all systems {Yi ,Yj , u} are stable – as shown in the figure

(edges stand for the link graph of u). In this case we say that v
covers {Yj , u}.

4 Pick C as the set of the vertices who cover many {Yj , u}. Show
that |C| ≤ m < n/4.

5 H[V \ C] is sparse.

Jie Han (Georgia State University) Hypergraphs Hamilton May 25, 2013 16 / 17



Proof Ideas of Y -tiling
For a maximal Y -tiling {Y1,Y2, · · · ,Ym} in K , let V ′ be set of vertices
covered by some copy of Y and U = V \ V ′. Assume that |U| ≥ 220.
Goal: find a sparse set of size ⌊3

4n⌋.
1 e(U) ≤ 1

3

(|U|
2

)

.
2 e(UUV ′) ≤ (1 + o(1))m

(|U|
2

)

.
3 Almost all systems {Yi ,Yj , u} are stable – as shown in the figure

(edges stand for the link graph of u). In this case we say that v
covers {Yj , u}.

4 Pick C as the set of the vertices who cover many {Yj , u}. Show
that |C| ≤ m < n/4.

5 H[V \ C] is sparse.

YU

Jie Han (Georgia State University) Hypergraphs Hamilton May 25, 2013 16 / 17



Proof Ideas of Y -tiling
For a maximal Y -tiling {Y1,Y2, · · · ,Ym} in K , let V ′ be set of vertices
covered by some copy of Y and U = V \ V ′. Assume that |U| ≥ 220.
Goal: find a sparse set of size ⌊3

4n⌋.
1 e(U) ≤ 1

3

(|U|
2

)

.
2 e(UUV ′) ≤ (1 + o(1))m

(|U|
2

)

.
3 Almost all systems {Yi ,Yj , u} are stable – as shown in the figure

(edges stand for the link graph of u). In this case we say that v
covers {Yj , u}.

4 Pick C as the set of the vertices who cover many {Yj , u}. Show
that |C| ≤ m < n/4.

5 H[V \ C] is sparse.

YjYi

u
v

Jie Han (Georgia State University) Hypergraphs Hamilton May 25, 2013 16 / 17



Proof Ideas of Y -tiling

For a maximal Y -tiling {Y1,Y2, · · · ,Ym} in K , let V ′ be set of vertices
covered by some copy of Y and U = V \ V ′. Assume that |U| ≥ 220.
Goal: find a sparse set of size ⌊3

4n⌋.

1 e(U) ≤ 1
3

(|U|
2

)

.

2 e(UUV ′) ≤ (1 + o(1))m
(|U|

2

)

.
3 Almost all systems {Yi ,Yj , u} are stable – as shown in the figure

(edges stand for the link graph of u). In this case we say that v
covers {Yj , u}.

4 Pick C as the set of the vertices who cover many {Yj , u}. Show
that |C| ≤ m < n/4.

5 H[V \ C] is sparse.

Jie Han (Georgia State University) Hypergraphs Hamilton May 25, 2013 16 / 17



Proof Ideas of Y -tiling

For a maximal Y -tiling {Y1,Y2, · · · ,Ym} in K , let V ′ be set of vertices
covered by some copy of Y and U = V \ V ′. Assume that |U| ≥ 220.
Goal: find a sparse set of size ⌊3

4n⌋.

1 e(U) ≤ 1
3

(|U|
2

)

.

2 e(UUV ′) ≤ (1 + o(1))m
(|U|

2

)

.
3 Almost all systems {Yi ,Yj , u} are stable – as shown in the figure

(edges stand for the link graph of u). In this case we say that v
covers {Yj , u}.

4 Pick C as the set of the vertices who cover many {Yj , u}. Show
that |C| ≤ m < n/4.

5 H[V \ C] is sparse.

Jie Han (Georgia State University) Hypergraphs Hamilton May 25, 2013 16 / 17



Concluding Remarks and Open Problems

Remarks:

This proof may be extended to finding the (k − 2)-degree
threshold of loose Hamilton cycles in k -graphs.

The proof for our other theorem is similar.

Open problems:

Determine the codegree thresholds exactly when k − ℓ divides k .

Other cases, e.g., finding the vertex-degree threshold for tight H.
cycles in 3-graphs.

Jie Han (Georgia State University) Hypergraphs Hamilton May 25, 2013 17 / 17



Concluding Remarks and Open Problems

Remarks:

This proof may be extended to finding the (k − 2)-degree
threshold of loose Hamilton cycles in k -graphs.

The proof for our other theorem is similar.

Open problems:

Determine the codegree thresholds exactly when k − ℓ divides k .

Other cases, e.g., finding the vertex-degree threshold for tight H.
cycles in 3-graphs.

Jie Han (Georgia State University) Hypergraphs Hamilton May 25, 2013 17 / 17



Concluding Remarks and Open Problems

Remarks:

This proof may be extended to finding the (k − 2)-degree
threshold of loose Hamilton cycles in k -graphs.

The proof for our other theorem is similar.

Open problems:

Determine the codegree thresholds exactly when k − ℓ divides k .

Other cases, e.g., finding the vertex-degree threshold for tight H.
cycles in 3-graphs.

Jie Han (Georgia State University) Hypergraphs Hamilton May 25, 2013 17 / 17



Concluding Remarks and Open Problems

Remarks:

This proof may be extended to finding the (k − 2)-degree
threshold of loose Hamilton cycles in k -graphs.

The proof for our other theorem is similar.

Open problems:

Determine the codegree thresholds exactly when k − ℓ divides k .

Other cases, e.g., finding the vertex-degree threshold for tight H.
cycles in 3-graphs.

Jie Han (Georgia State University) Hypergraphs Hamilton May 25, 2013 17 / 17


	Introduction and Main results
	Proof Ideas
	Concluding Remarks and Open Problems

