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Surfaces

A surface is a connected compact 2-manifold
without boundary.

A sphere, a torus, a projective plane, or a
Klein bottle is a surface. The plane can be
considered as a punctured sphere.
We have two types of closed surfaces,
either orientable or non-orientable.
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Surfaces

The classification theorem:

The orientable surface Sg (g ≥ 0) can be
obtained from a sphere with 2g pairwise
disjoint holes attached with g tubes
(handles) such that each tube welds two
holes.
The number g is called the genus of the
orientable surface.
A sphere (the plane)=S0, and a torus=S1.
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Surfaces

The classification theorem:

The non-orientable surface Nk can be
obtained from a sphere with k pairwise
disjoint holes attached with k Möbius strips
such that each Möbius strip welds one hole.
The number k is called the non-orientable
genus of Nk .
A projective plane=N1, and
a Klein bottle=N2.
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Genus of graphs

A graph is embeddable into a surface if we
can draw the graph on the surface without
edge-crossing.
The genus of a graph G, denoted γ(G), is
the minimum g of Sg into which G is
embeddable.
A graph G is planar iff γ(G) = 0.
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Genus of graphs

Similarly, the non-orientable genus of a
graph G, denoted γ̄(G), is the minimum k of
Nk into which G is embeddable.
A graph G is projective-planar iff γ̄(G) = 1.
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Motivation

Only planar graphs (γ = 0) and projective planar
graphs (γ̄ = 1) have been characterized by
using minimal non-embeddable graphs (also
called excluded minor minimals or obstructions).

The minimal non-embeddable graphs for torus
(γ = 1) is unknown (more than 16,000).
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Contracting a non-loop edge e is to delete e
and then to identify the endpoints of e.

A graph H is a minor of G if H can be
obtained from a subgraph of G by
contracting an edge repeatedly.

We say that G contains H-minor if G
contains a minor isomorphic to H.
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Known results

A graph G is planar (γ = 0)
⇐⇒ G is K5- and K3,3-minor-free.
G is K3,3-minor-free toroidal (γ = 1)
⇐⇒ G is Fi-minor-free with 1 ≤ i ≤ 4.
(F1 and F2 are 0-sum and 1-sum of two
K5’s, respectively.)
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There are several methods to be
considered to characterize genus of graphs.

1. Use H-minor-free graphs for some small
graphs H.
2. Combine with other graph invariants:
thickness, outerthickness or else?
Later we introduce a graph-surface
invariant.
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Edge-decomposition into forests (forest
thickness) has been solved completely
(Nash-Williams, 1964). It was called
arboricity.

The thickness of a graph G, denoted Θ(G), is a
minimum number of layers required for G to be
decomposed into planar subgraphs.
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A graph G is outerplanar if and only if G is
embeddable in the plane in such a way that all
vertices of G are on the boundary of the
outer-face.

The outerthickness of G, denoted Θo(G), is
the minimum number of layers required to make
an edge-decomposition into outerplanar
subgraphs.
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Motivation

In 2005, Daniel Gonçalves proved every
planar graph can be decomposed to at
most two outerplanar subgraphs.

Let O(t) be the class of all graphs with
outerthickness at most t .
Every planar graph is in O(2).
For every graph G, Θo(G) ≤ 2Θ(G).
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Our preliminary results

In other words, the class of K5-minor-free
and K3,3-minor- free graphs is in O(2).

We were interested in seeing how larger
class of this kind, such as K3,n-minor-free
graphs, falls in O(2).
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K3,3 and K++
3,3

If K3,3-free, then K++

3,3 -free.
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The class of K++

3,3 -minor free graphs is in
O(2).

If K3,3-free, then K++

3,3 -free.

Therefore, the class of K3,3-minor free
graphs is in O(2).
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Our preliminary results

The class of K5-minor free graphs is not in
O(2) since Θo(K3,9) = 3. We determined
the following.

The class of K5-minor free and K3,4-minor free
graphs is in O(2).

But, the class of K5-minor free and K3,5-minor
free graphs is not in O(2). We construct a
counterexample.
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A new graph-surface invariant

Let S be a surface Sg(g > 0) or Nk(k > 1).
Suppose G is embeddable in S.
We define a new graph-surface invariant,
denoted st(G,S).
Let e-curves on S be disjoint simple closed
noncontractable curves. The standard
meridian on a torus is an e-curve.
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3 meridians on a torus

The torus consists of blue, green and red
cylinders.
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3 cylinders and vertices

Vertices on the 3 cylinders are appropriately
identified.
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A new graph-surface invariant

Among all embeddings of G into S, let
st(G,S) be the minimum number of
e-curves on S such that the curves pass
through all vertices without crossing any
edges of G.

If G is toroidal, then st(G,S1) is called the
meridian number of G.
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A new graph-surface invariant

Imagine a graph G is embedded in a
surface and a set of e-curves of G is known.

If we cut the surface through the e-curves
of G, then we obtain hi-holed disks that
V (G) are on the boundaries of the disks
and no edge crossings on each disk (a new
way to visualize embedded graph).

Kanno Genus and other graph invariants
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A new graph-surface invariant
Advantages of the st(G,S).

Let ST (S, t) be the set of graphs G
embeddable in S with st(G,S) ≤ t . Then
ST (S, t) is topological-minor-closed. Not
minor-closed because contracting an edge
whose endpoints are on different e-curves
makes the e-curves intersect.
Provide a new way to visualize embedded
graph. For example, K7 has a symmetric
presentation in S1. (no struggle!)
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A new graph-surface invariant

The followings have meridian number 1.

K7 (David VanHeeswijk)
K4,4

K3,6

(K5 − e) +0 (K5 − e)
K5 +1 (K5 − e)

Stacey McAdams: K5 +0 (K5 − e) has meridian
number at most 2.
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A new graph-surface invariant

Conjecture (J.K.):
The toroidal graph obtained from p-fold covering
space of (K7,S1) along the standard longitude
of S1 has meridian number p.

Remark: This is false for arbitrary graph. There
exists a graph that its 3-fold covering space has
meridian number 1.

Kanno Genus and other graph invariants
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Problems

Here are unsolved problems.
Is every projective-planar graph in O(2)?

Let M be a K3,4-minor-free projective-planar
graph (see John Maharry et al.)
Is every M in O(2)?
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Problems

Find excluded minor minimals for each set
of ST (S1, t).
Find excluded topological minor minimals
for each set of ST (S1, t).

Classify the known excluded minor
minimals G for toroidal by using a higher
surface st(G,Nk) or st(G,Sg).
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If G is embeddable into both S1 and N2,
then how are st(G,N2) and st(G,S1)
related?
For example, is st(G,N2) > st(G,S1) true
for any G?
If γ(G) = g and st(G,Sg) > 1,
st(G,Sg+1) = st(G,Sg)− 1 is true?
Characterize the relationship between
st(G,S) and Oo(G).
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Thank you!
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