26th Cumberland Conference on
 Combinatorics, Graph Theory \& Computing

May 24 - May 26, 2013
Middle Tennessee State University

The spectral lower bounds for the circumferences of graphs

Rao Li
Dept. of mathematical sciences
University of South Carolina Aiken
Aiken, SC 29801

-G is a simple graph of order n.
$-c(G)$ denotes the circumference, i.e., the length of the longest cycle, in G.
-A cycle C is called a dominating cycle if the order of each component in $G[V(G)-V(C)]$ is less than 2 .
$-\sigma_{\mathrm{k}}(\mathrm{G}):=\min \left\{\mathrm{d}\left(\mathrm{x}_{1}\right)+\mathrm{d}\left(\mathrm{x}_{2}\right)+\ldots+\mathrm{d}\left(\mathrm{x}_{\mathrm{k}}\right):\right.$ where $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ is an independent set in $\left.G\right\}$.
$-\mathrm{e}_{\mathrm{G}}(\mathrm{S}, \mathrm{T})=\mid\{\mathrm{st}: \mathrm{s} \in \mathrm{S}, \mathrm{t} \in \mathrm{T}$, st $\in \mathrm{E}(\mathrm{G})$, and $\mathrm{S} \cap \mathrm{T}=\varnothing\} \mid$
-A graph G is $1-$ tough if $r(G-S) \leq|S|$ for every subset S of $V(G)$ with $r(G-S)>1$, where $r(G-S)$ is the number of components in the graph $\mathrm{G}[\mathrm{V}(\mathrm{G})-\mathrm{S}]$.
-A(G) is the adjacency matrix of G.
-The Laplacian of a graph G is defined as $L(G)=D(G)-A(G)$, where $\mathrm{D}(\mathrm{G})$ is the diagonal matrix of the vertex degrees of G .
-The Laplacian eigenvalues $\lambda_{1}(\mathrm{G}) \geq \lambda_{2}(\mathrm{G}) \geq \ldots \geq \lambda_{\mathrm{n}}(\mathrm{G})=0$ of a graph G are the eigenvalues of $L(G)$.
-The signless Laplacian of a graph G is defined as $L^{+}(G)=D(G)+A(G)$, where $D(G)$ is the diagonal matrix of the vertex degrees of G.
-The eigenvalues $\mathrm{q}_{1}(\mathrm{G}) \geq \mathrm{q}_{2}(\mathrm{G}) \geq \ldots \geq \mathrm{q}_{\mathrm{n}}(\mathrm{G})$ of $\mathrm{L}^{+}(\mathrm{G})$ are called signless Laplacian eigenvalues of G .

Theorem 1 Let G be a graph of order n. If u is vertex in G, then

$$
\lambda_{i+1}(G)-1 \leq \lambda_{i}(G-u) \leq \lambda_{i}(G) \text {, where } i=1,2, \cdots,(n-1) \text {. }
$$

Z. Lotker, Note on deleting a vertex and weak interlacing of the Laplacian spectrum, Electronic Journal of Linear Algebra 16 (2007) 68-72.

Theorem 2 Let G be a graph of order n. If u is vertex in G, then

$$
q_{i+1}(G)-1 \leq q_{i}(G-u) \leq q_{i}(G), \text { where } i=1,2, \cdots,(n-1) .
$$

J. Wang and F. Belardo, A note on the signless Laplacian eigenvalues of graphs, Linear Algebra and Its Applications 435 (2011) 2585-2590.

The following Theorem 3 is Lemma 8 in
D. Bauer, H. J. Veldman, A. Morgana, E. F. Schmeichel, Long cycles in graphs with large degree sums, Discrete Math. 79 (1989/90) $59-70$.

Theorem 3 Let G be a graph of order n such that $\delta \geq 2$ and $\sigma_{3} \geq n$. Let G contain a longest cycle C which is a dominating cycle. If $v_{0} \in V(G)-V(C)$ and $A=N\left(v_{0}\right)$, then $(V(G)-V(C)) \cup A^{+}$is an independent set of vertices.

The following Theorem 4 is from Theorem 7 and proof of Theorem 10 in
D. Bauer, H. J. Veldman, A. Morgana, E. F. Schmeichel, Long cycles in graphs with large degree sums, Discrete Math. 79 (1989/90) $59-70$.

Theorem 4 Let G be a $2-$ connected graph of order n such that $\sigma_{3} \geq n+2$. Then every longest cycle C in G is a dominating cycle and $\max \{d(v): v \in$ $V(G)-V(C)\} \geq \frac{\sigma_{3}}{3}$.

The following Theorem 5 is from Theorem 5 and proof of Theorem 9 in
D. Bauer, H. J. Veldman, A. Morgana, E. F. Schmeichel, Long cycles in graphs with large degree sums, Discrete Math. 79 (1989/90) $59-70$.

Theorem 5 Let G be a 1 - tough graph of order n such that $\sigma_{3} \geq n$. Then every longest cycle C in G is a dominating cycle and $\max \{d(v): v \in$ $V(G)-V(C)\} \geq \frac{\sigma_{3}}{3}$.

Theorem 6 Let G be a 2 - connected graph of order n such that $\sigma_{3} \geq n+2$. Then $c(G) \geq \min \left\{n, \lambda_{\left\lfloor\frac{2 n-2}{3}\right\rfloor}(G)+\left\lceil\frac{n+2}{3}\right\rceil\right\}$.

Proof of Theorem 6. Let G be a graph satisfying the conditions in Theorem 6. If $c(G)=n$, then the proof is finished. Now we assume that $c(G)<n$. Then Theorem 3 and Theorem 4 imply that there exists a longest cycle C, which is also a dominating cycle, in G such that $d(x) \geq \frac{\sigma_{3}}{3} \geq \frac{n+2}{3}$, where $x \in V(G)-V(C)$ and for any vertex $w \in V(G)-V(C), d(x) \geq d(w)$. Let S be the set $N(x) \cap V(C)$. Set $N_{1}:=(V(G)-V(C)) \cup S^{+}$. Then by Theorem 3 we have that N_{1} is independent. Let $N_{2}=V(G)-N_{1}$. Then $\left|N_{2}\right|=n-\left|N_{1}\right|=c-d(x) \leq n-1-\frac{n+2}{3}=\frac{2 n-5}{3}$. Set $N_{2}=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$, where $k=\left|N_{2}\right|$. By Theorem 1, we have

$$
\begin{gathered}
\lambda_{k}\left(G-x_{1}\right) \geq \lambda_{k+1}(G)-1, \\
\lambda_{k-1}\left(G-x_{1}-x_{2}\right) \geq \lambda_{k}\left(G-x_{1}\right)-1, \\
\lambda_{k-2}\left(G-x_{1}-x_{2}-x_{3}\right) \geq \lambda_{k-1}\left(G-x_{1}-x_{2}\right)-1,
\end{gathered}
$$

$$
\lambda_{k-(k-1)}\left(G-x_{1}-x_{2}-\ldots-x_{k}\right) \geq \lambda_{k-(k-2)}\left(G-x_{1}-x_{2}-\ldots-x_{k-1}\right)-1 .
$$

Summing up the inequalities above, we have

$$
\lambda_{1}\left(G-x_{1}-x_{2}-x_{3}-\ldots-x_{k}\right) \geq \lambda_{k+1}(G)-k=\lambda_{k+1}(G)-(c-d(x)) .
$$

Since there is no edge in the graph $\left(G-x_{1}-x_{2}-x_{3}-\ldots-x_{k}\right), \lambda_{1}\left(G-x_{1}-\right.$ $\left.x_{2}-x_{3} \ldots-x_{k}\right)=0$. Thus $c \geq \lambda_{k+1}(G)+d(x)$.

Since $k+1 \leq \frac{2 n-5}{3}+1=\frac{2 n-2}{3}, \lambda_{k+1}(G) \geq \lambda_{\left\lfloor\frac{2 n-2}{3}\right\rfloor}(G)$. Hence

$$
c \geq \lambda_{k+1}(G)+d(x) \geq \lambda_{\left\lfloor\frac{2 n-2}{3}\right\rfloor}+d(x) \geq \lambda_{\left\lfloor\frac{2 n-2}{3}\right\rfloor}(G)+\left\lceil\frac{n+2}{3}\right\rceil .
$$

Thus we complete the proof of Theorem 6.

Notice that the lower bound in Theorem 6 is attainable for some graphs. For instance, let G be $K_{s, t}$, where $3 \leq s \leq t=2 s-2$. Then G is $2-$ connected, $\sigma_{3}=n+2=3 s, c(G)=2 s$. Also

$$
\lambda_{\left\lfloor\frac{2 n-2}{3}\right\rfloor}(G)+\left\lceil\frac{n+2}{3}\right\rceil=\lambda_{2 s-2}(G)+s=s+s
$$

Therefore $c(G)=\min \left\{n, \lambda_{\left\lfloor\frac{2 n-2}{3}\right\rfloor}(G)+\left\lceil\frac{n+2}{3}\right\rceil\right\}=2 \mathrm{~s}$.

Using Theorem 2 and arguments similar to those in the proof of Theorem 6 , we can prove the following theorem.

Theorem 7 Let G be a 2 - connected graph of order n such that $\sigma_{3} \geq n+2$. Then $c(G) \geq \min \left\{n, q_{\left\lfloor\frac{2 n-2}{3}\right\rfloor}(G)+\left\lceil\frac{n+2}{3}\right\rceil\right\}$.

Again, the bipartite graphs $K_{s, t}$, where $3 \leq s \leq t=2 s-2$, show that the lower bound in Theorem 7 is attainable for some graphs.

Using Theorem 1, Theorem 3, Theorem 5, and arguments similar to those in the proof of Theorem 6, we can prove the following theorem.

Theorem 8 Let G be a 1 - tough graph of order n such that $\sigma_{3} \geq n$. Then $c(G) \geq \min \left\{n, \lambda_{\left\lfloor\frac{2 n}{3}\right\rfloor}(G)+\left\lceil\frac{n}{3}\right\rceil\right\}$.

Using Theorem 2, Theorem 3, Theorem 5, and arguments similar to those in the proof of Theorem 6, we can prove the following theorem.

Theorem 9 Let G be a 1 - tough graph of order n such that $\sigma_{3} \geq n$. Then $c(G) \geq \min \left\{n, q_{\left\lfloor\frac{2 n}{3}\right\rfloor}(G)+\left\lceil\frac{n}{3}\right\rceil\right\}$.

Theorem 10 Let G be a 2 - connected graph of order n such that $\sigma_{3} \geq \mathrm{n}+2$. Then $\mathrm{c}(\mathrm{G}) \geq \min \left\{\mathrm{n}, \sigma_{3}\left(\mathrm{n} / \lambda_{1}+1\right) / 3\right\}$.

Proof of Theorem 10 Let G be a graph satisfying the conditions in Theorem 10. If $c(G)=n$, then the proof is
finished. Now we assume that $\mathrm{c}(\mathrm{G})<\mathrm{n}$. Then Theorem 3 and Theorem 4 imply that there exists a longest cycle C, which is also a dominating cycle, in G such that $d(x) \geq \sigma_{3} / 3$, where
x is in $V(G)-V(C)$ and for any vertex w in $V(G)-V(C)$, $\mathrm{d}(\mathrm{x}) \geq \mathrm{d}(\mathrm{w})$. Let A be the set $N(x) \cap V(C)$.

Set $N_{1}:=(V(G)-V(C)) \cup A^{+}$. Then by Theorem 3 we have that N_{1} is independent. Moreover, $\left|\mathrm{N}_{1}\right|=\mathrm{n}-|\mathrm{C}|+\mathrm{d}(\mathrm{x}) \geq 3$ since $\mathrm{n}-|\mathrm{C}| \geq 1$ and $\mathrm{d}(\mathrm{x}) \geq 2$. Therefore

$$
\frac{\sigma_{\left|N_{1}\right|}}{\left|N_{1}\right|} \geq \frac{\sigma_{3}}{3} .
$$

Define $N_{2}:=V(G)-N_{1}=|C|-d(x)$. Then N_{1} and N_{2} form a partition of $V(G)$. Thus

$$
\lambda_{1} \geq \frac{e\left(N_{1}, N_{2}\right) n}{\left|N_{1}\right|\left|N_{2}\right|} .
$$

Therefore

$$
\lambda_{1} \geq \frac{e\left(N_{1}, N_{2}\right)}{\left|N_{1}\right|} \frac{n}{\left|N_{2}\right|} \geq \frac{\sigma_{N_{1}}}{\left|N_{1}\right|} \frac{n}{(|C|-d(x))}
$$

Solving the inequality, we have that

$$
\mathrm{c}(\mathrm{G}) \geq|\mathrm{C}| \geq \frac{\sigma_{N_{1}}}{\left|N_{1}\right|}\left(\mathrm{n} / \lambda_{1}\right)+\mathrm{d}(\mathrm{x}) \geq \sigma_{3}\left(\mathrm{n} / \lambda_{1}+1\right) / 3 .
$$

Hence we complete the proof of Theorem 10.

Notice that the lower bound for $\mathrm{c}(\mathrm{G})$ in Theorem 10 is attainable for some graphs. For instance, let G be $K_{p, ~}$, where $3 \leq p \leq q=2 p$

- 2. Then G is 2 - connected, $\sigma_{3}=\mathrm{n}+2=3 \mathrm{p}, \lambda_{1}=\mathrm{p}+\mathrm{q}=\mathrm{n}, \mathrm{c}(\mathrm{G})$
$=2 \mathrm{p}$, and $\min \left\{\mathrm{n}, \sigma_{3}\left(\mathrm{n} / \lambda_{1}+1\right) / 3\right\}=2 \sigma_{3} / 3=2 \mathrm{p}$.

Similarly, we can prove the following theorem.

Theorem 11 Let G be a 1 - tough graph of order n such that $\sigma_{3} \geq \mathrm{n}$. Then $\mathrm{c}(\mathrm{G}) \geq \min \left\{\mathrm{n}, \sigma_{3}\left(\mathrm{n} / \lambda_{1}+1\right) / 3\right\}$.

Thanks

