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-G i1s a simple graph of order n.

-c(G) denotes the circumference, i.e., the length of the longest
cycle, in G.

-A cycle C is called a dominating cycle if the order of each
component in G[V(G) — V(C)] is less than 2.

-6,,(G) ;= min {d(x;) + d(x,) + ... +d(x,) : where
{Xy, X5, ..., X, } Is an independent set in G}.



-5(S, T)=|{st:seS,teT,ste E(G),andS N T =}|

-A graph G is 1 —tough if r(G - S) <|S| for every subset S of
V(G) with r(G - S) > 1, where r(G - S) is the number of
components in the graph G[V(G) - S].

-A(G) Is the adjacency matrix of G.



-The Laplacian of a graph G is defined as L(G) = D(G) — A(G),
where D(G) Is the diagonal matrix of the vertex degrees of G.

-The Laplacian eigenvalues A,(G) > A,(G) > ... >A,(G) =0
of a graph G are the eigenvalues of L(G).

-The signless Laplacian of a graph G is defined as
L*(G) = D(G) + A(G), where D(G) is the diagonal
matrix of the vertex degrees of G.

-The eigenvalues q,(G) > q,(G) > ... > q,(G) of L*(G)
are called signless Laplacian eigenvalues of G.



Theorem 1 Let GG be a graph of order n. If u 1s vertex i ', then

Na1(G) =1 < NG —u) < N(G),where 1 =1,2,--- (n—1).

Z.. Lotker, Note on deleting a vertex and weak interlacing of the Lapla-
cilan spectrum, Electronic Journal of Linear Algebra 16 (2007) 68 — 72.



Theorem 2 Let G be a graph of order n. If u 1s vertex in G, then

¢is1(G) — 1 < q:(G —u) < ¢;(G), where 1 =1,2,--- (n—1).

J. Wang and F. Belardo, A note on the signless Laplacian eigenvalues
of graphs, Linear Algebra and Its Applications 435 (2011) 2585 — 2590.



The following Theorem 3 1s Lemma 8 1n

D. Bauer, H. J. Veldman, A. Morgana, E. F. Schmeichel. Long cycles in
graphs with large degree sums, Discrete Math. 79 (1989/90) 59 — 70.

Theorem 3 Let GG be a graph of order n such that 6 > 2 and 03 > n. Let G
contain a longest cycle C' which is a dominating cycle. If vy € V(G) — V(')
and A = N(vg), then (V(G)—V(C))U AT is an independent set of vertices.






The following Theorem 4 1s from Theorem 7 and proof of Theorem 10 1n

D. Bauer, H. J. Veldman, A. Morgana, E. F. Schmeichel. Long cycles in
graphs with large degree sums, Discrete Math. 79 (1989/90) 59 — 70.

Theorem 4 Let G be a2 connected graph of order n such that o3 > n+2.
Then every longest cycle C' in G is a dominating cycle and max{d(v) : v €

V(G)=V(C)} > %



The following Theorem 5 1s from Theorem 5 and proof of Theorem 9 in

D. Bauer, H. J. Veldman, A. Morgana, E. F. Schmeichel. Long cycles in
graphs with large degree sums, Discrete Math. 79 (1989/90) 59 — 70.

Theorem 5 Let G be a 1 — tough graph of order n such that o3 > n.
Then every longest cycle C' in GG is a dominating cycle and max{d(v) : v €

V(G)=V(O)} > 2.
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Theorem 6 Let G be a 2 — connected graph of order n such that o3 > n+2.
Then ¢(G) 2 min{n, A 2.2 (G) + [2427 }.

Proof of Theorem 6. Let G be a graph satisfying the conditions in Theorem
6. If ¢(G') = n, then the proof is finished. Now we assume that ¢(G) < n.
Then Theorem 3 and Theorem 4 1mply that there exists a longest cycle C,

which is also a dominating cycle, in G such that d(z) > % > ”;rg._ where

r € V(G) = V(C) and for any vertex w € V(G) — V(C), d(x) > d(w).
Let S be the set N(z) N V(C). Set Ny := (V(G) = V(C)) U ST. Then by
Theorem 3 we have that Nj is independent. Let Ny = V(G) — Ny Then
No Ni|l=c—d(z)<n—-1- ”Jg? = 2'”55. Set Ny = {1, 79, ... 7 }.
where k& = | Ny|. By Theorem 1, we have

= 1 —
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Me(G —z1) 2 Myt (G) — 1,

Ae—1(G — 1 — x9) 2 A(G —21) — 1,
M—2(G—z1— 29— x3) > N 1(G — 21 —12) — 1,
)\k—(k—l}(g — T — Ty — ... — Ik) E )&k_(k_g}(G — T — Ty — ... — Ik_1) — 1.

Summing up the mequalities above, we have
MG =z =29 — 73— 0. = 71) Z Myt (G) — k= A1 (G) — (e —d(z)).

Since there i1s no edge in the graph (G —z1 — 29 — 23— ... —x), M(G — 11 —
Ty — x3... — 1) = 0. Thus ¢ > A\, (G) +d(x).
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Since k+1 < 2”3_5 +1=222 )\ (G > AL%J(G)' Hence

3
f n+2
¢ 2 Mey1(G) +d(z) 2 }‘LE”—{‘?J +d(z) > )\Lzﬂz_—?J (G)+ 3 1.
Thus we complete the proof of Theorem 6. O

Notice that the lower bound i Theorem 6 1s attainable for some graphs.
For mstance, let G be K;,;, where 3 < s <t = 25 —2. Then G 1s 2 -
connected, o3 =n+ 2 = 3s, ¢(G) = 2s. Also

n-+2
3

Therefore ¢(G) = min{ n, AL%J(G) + 227} = 2s.

A2z (G) +

1= a(G)+s=s+s.
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Using Theorem 2 and arguments similar to those 1in the proof of Theorem
6, we can prove the following theorem.

Theorem 7 Let GG be a 2 — connected graph of order n such that o3 > n+2.

Then ¢(G) > min{ n,q 22 (G) + =21}

Again, the bipartite graphs K, where 3 < s <t = 2s — 2, show that
the lower bound 1n Theorem 7 1s attainable for some graphs.
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Using Theorem 1, Theorem 3, Theorem 5, and arguments similar to those
in the proof of Theorem 6, we can prove the following theorem.

Theorem 8 Let G be a1 — tough graph of order n such that o3 > n. Then

c(G) z min{n, A 2z (G) + [5] }-

Using Theorem 2, Theorem 3, Theorem 5, and arguments similar to those
in the proof of Theorem 6, we can prove the following theorem.

Theorem 9 Let G be a 1 —tough graph of order n such that o3 > n. Then
¢(G) = min{ '”:qL?TnJ(G) + (3]}
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Theorem 10 Let G be a 2 — connected graph of order n such

that 63> n + 2. Then ¢(G) > min {n, o5(n/A, + 1)/3}.

Proof of Theorem 10 Let G be a graph satisfying the
conditions in Theorem 10. If ¢(G) = n, then the proof is
finished. Now we assume that ¢(G) < n. Then Theorem 3 and
Theorem 4 imply that there exists a longest cycle C, which is

also a dominating cycle, in G such that d(x) > c4/3, where
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x 15 In V(G) — V(C) and for any vertex w in V(G) - V(C),
d(x) > d(w). Let A be the setN(z) N V(C).

Set N;:=(V(G)-V(C))UA™. Then by Theorem 3 we have that
N, is independent. Moreover, [N,| = n - |C| + d(X) > 3 since

n-|C|>1 and d(x) > 2. Therefore

T, O3
Ny =3

17



Define N, := V(G) — N, = |C| - d(x). Then N, and N, form a
partition of V(G). Thus

> E(A‘H,ﬁrg]ﬂ
N[ Ne|

Therefore

e(Ny.No) n TN n
Ni. No) S ON

> — - -
MZ N V2 N0 = do)
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Solving the inequality, we have that
c(G) >|C| > "“’“” = (/) + d(X) = o5(n/y + 1)/3.

Hence we complete the proof of Theorem 10.
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Notice that the lower bound for ¢(G) in Theorem 10 is attainable
for some graphs. For instance, let G be K; ,, where 3<p <q=2p

-2.Then Gis 2 - connected, 6, =n+2=3p, A, =p+q=n, c(G)

= 2p, and min{n, o5(n/A, + 1)/3} = 26,/3 = 2p.
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Similarly, we can prove the following theorem.

Theorem 11 Let G be a1 - tough graph of order n such that
o3 >n. Then ¢(G) > min {n, o5(n/A, + 1)/3}.
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Thanks
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