Online Scheduling and Paintability

Thomas Mahoney

University of Illinois at Urbana-Champaign
tmahone2@math.uiuc.edu

Joint work with
James Carraher, Sarah Loeb, Gregory J. Puleo, Mu-Tsun Tsai, and Douglas West

List Coloring (Graph Choosability)

Def. A list assignment L assigns each $v \in V(G)$ a list $L(v)$ of available colors; G is L-colorable if G has a proper coloring giving each vertex v a color from $L(v)$.

List Coloring (Graph Choosability)

Def. A list assignment L assigns each $v \in V(G)$ a list $L(v)$ of available colors; G is L-colorable if G has a proper coloring giving each vertex v a color from $L(v)$.

Def. A graph G is f-choosable if G is L-colorable whenever that $|L(v)| \geq f(v)$ for all v.

List Coloring (Graph Choosability)

Def. A list assignment L assigns each $v \in V(G)$ a list $L(v)$ of available colors; G is L-colorable if G has a proper coloring giving each vertex v a color from $L(v)$.

Def. A graph G is f-choosable if G is L-colorable whenever that $|L(v)| \geq f(v)$ for all v.

Def. G is k-choosable if it is f-choosable when $f(v)=k$ for all v.

List Coloring (Graph Choosability)

Def. A list assignment L assigns each $v \in V(G)$ a list $L(v)$ of available colors; G is L-colorable if G has a proper coloring giving each vertex v a color from $L(v)$.

Def. A graph G is f-choosable if G is L-colorable whenever that $|L(v)| \geq f(v)$ for all v.

Def. G is k-choosable if it is f-choosable when $f(v)=k$ for all v.

The least such k is the choosability, choice number, or list-chromatic number of G, denoted $\chi_{\ell}(G)$.

List Coloring (Graph Choosability)

Def. A list assignment L assigns each $v \in V(G)$ a list $L(v)$ of available colors; G is L-colorable if G has a proper coloring giving each vertex v a color from $L(v)$.

Def. A graph G is f-choosable if G is L-colorable whenever that $|L(v)| \geq f(v)$ for all v.

Def. G is k-choosable if it is f-choosable when $f(v)=k$ for all v.

The least such k is the choosability, choice number, or list-chromatic number of G, denoted $\chi_{\ell}(G)$.

Goal: Consider an online version of choosability.

Online Choosability (Zhu [2009])

Let the coloring algorithm for choosability of a graph G be called Painter.

Online Choosability (Zhu [2009])

Let the coloring algorithm for choosability of a graph G be called Painter.

Ques. What if the algorithm (Painter) sees each list only a little bit at a time?

Online Choosability (Zhu [2009])

Let the coloring algorithm for choosability of a graph G be called Painter.

Ques. What if the algorithm (Painter) sees each list only a little bit at a time?

Suppose on round i, Painter must decide which vertices receive color i while only seeing what happened on earlier rounds.

Online Choosability (Zhu [2009])

Let the coloring algorithm for choosability of a graph G be called Painter.

Ques. What if the algorithm (Painter) sees each list only a little bit at a time?

Suppose on round i, Painter must decide which vertices receive color i while only seeing what happened on earlier rounds.
i.e. on round i, Painter doesn't know which vertices have $i+1$ in their lists.

Online Choosability (Zhu [2009])

Let the coloring algorithm for choosability of a graph G be called Painter.

Ques. What if the algorithm (Painter) sees each list only a little bit at a time?

Suppose on round i, Painter must decide which vertices receive color i while only seeing what happened on earlier rounds.
i.e. on round i, Painter doesn't know which vertices have $i+1$ in their lists.

Ques. How much worse is this for Painter?

Online Choosability (Zhu [2009])

Let the coloring algorithm for choosability of a graph G be called Painter.

Ques. What if the algorithm (Painter) sees each list only a little bit at a time?

Suppose on round i, Painter must decide which vertices receive color i while only seeing what happened on earlier rounds.
i.e. on round i, Painter doesn't know which vertices have $i+1$ in their lists.

Ques. How much worse is this for Painter?
Worst-case analysis is modeled by the following game:

Lister/Painter Game (Schauz [2009])
Two players: Lister and Painter on a graph G with a positive number of tokens at each vertex.

Lister/Painter Game (Schauz [2009])
Two players: Lister and Painter on a graph G with a positive number of tokens at each vertex.
Round: Lister presents (marks) a set M of the uncolored vxs, spending one token at each marked vtx.

Lister/Painter Game (Schauz [2009])

Two players: Lister and Painter on a graph G with a positive number of tokens at each vertex.

Round: Lister presents (marks) a set M of the uncolored vxs, spending one token at each marked vtx. Painter selects a subset of M forming an independent set in G; these vertices are assigned a color distinct from previously used colors.

Lister/Painter Game (Schauz [2009])

Two players: Lister and Painter on a graph G with a positive number of tokens at each vertex.
Round: Lister presents (marks) a set M of the uncolored vxs, spending one token at each marked vtx. Painter selects a subset of M forming an independent set in G; these vertices are assigned a color distinct from previously used colors.
Goal: Lister wins by presenting a vertex with no tokens. Painter wins by coloring all vertices in the graph.

Lister/Painter Game (Schauz [2009])

Two players: Lister and Painter on a graph G with a positive number of tokens at each vertex.
Round: Lister presents (marks) a set M of the uncolored vxs, spending one token at each marked vtx. Painter selects a subset of M forming an independent set in G; these vertices are assigned a color distinct from previously used colors.
Goal: Lister wins by presenting a vertex with no tokens. Painter wins by coloring all vertices in the graph.

- Lister can use a list assignment L as a "schedule," allocating $|L(v)|$ tokens to each vertex v.

Lister/Painter Game (Schauz [2009])

Two players: Lister and Painter on a graph G with a positive number of tokens at each vertex.
Round: Lister presents (marks) a set M of the uncolored vxs, spending one token at each marked vtx. Painter selects a subset of M forming an independent set in G; these vertices are assigned a color distinct from previously used colors.
Goal: Lister wins by presenting a vertex with no tokens. Painter wins by coloring all vertices in the graph.

- Lister can use a list assignment L as a "schedule," allocating $|L(v)|$ tokens to each vertex v. If in round i, Lister presents $\{v: i \in L(v)\}$, then Painter wins against this strategy $\Leftrightarrow G$ is L-colorable.

Lister/Painter Game (Schauz [2009])

Two players: Lister and Painter on a graph G with a positive number of tokens at each vertex.
Round: Lister presents (marks) a set M of the uncolored vxs, spending one token at each marked vtx. Painter selects a subset of M forming an independent set in G; these vertices are assigned a color distinct from previously used colors.
Goal: Lister wins by presenting a vertex with no tokens. Painter wins by coloring all vertices in the graph.

- Lister can use a list assignment L as a "schedule," allocating $|L(v)|$ tokens to each vertex v. If in round i, Lister presents $\{v: i \in L(v)\}$, then Painter wins against this strategy $\Leftrightarrow G$ is L-colorable.
- An adaptive Lister, responding to Painter's earlier moves, may do better.

Example Game

Let's play the Lister/Painter game on $\Theta_{2,2,4}$.

Example Game

Let's play the Lister/Painter game on $\Theta_{2,2,4}$.

Example Game

Let's play the Lister/Painter game on $\Theta_{2,2,4}$.

Example Game

Let's play the Lister/Painter game on $\Theta_{2,2,4}$.

Example Game

Let's play the Lister/Painter game on $\Theta_{2,2,4}$.

Example Game

Let's play the Lister/Painter game on $\Theta_{2,2,4}$.

Example Game

Let's play the Lister/Painter game on $\Theta_{2,2,4}$.

Example Game

Let's play the Lister/Painter game on $\Theta_{2,2,4}$.

Example Game

Let's play the Lister/Painter game on $\Theta_{2,2,4}$.

Example Game

Let's play the Lister/Painter game on $\Theta_{2,2,4}$.

Example Game

Let's play the Lister/Painter game on $\Theta_{2,2,4}$.

Example Game

Let's play the Lister/Painter game on $\Theta_{2,2,4}$.

Example Game

Let's play the Lister/Painter game on $\Theta_{2,2,4}$.

Example Game

Let's play the Lister/Painter game on $\Theta_{2,2,4}$.

Conclude: Lister wins on $\Theta_{2,2,4}$ when each vertex has 2 tokens.

Definitions

Def. For $f: V(G) \rightarrow \mathbb{N}$, we say G is f-paintable if Painter has a winning strategy in the Lister/Painter game when each vertex v starts with $f(v)$ tokens.

Definitions

Def. For $f: V(G) \rightarrow \mathbb{N}$, we say G is f-paintable if Painter has a winning strategy in the Lister/Painter game when each vertex v starts with $f(v)$ tokens.

Def. If G is f-paintable when $f(v)=k$ for all $v \in V(G)$, then G is k-paintable.

Definitions

Def. For $f: V(G) \rightarrow \mathbb{N}$, we say G is f-paintable if Painter has a winning strategy in the Lister/Painter game when each vertex v starts with $f(v)$ tokens.

Def. If G is f-paintable when $f(v)=k$ for all $v \in V(G)$, then G is k-paintable.

Def. The least k such that G is k-paintable, denoted $\chi_{p}(G)$, is the paintability, paint number, online choice number, or online list-chromatic number of G.

Definitions

Def. For $f: V(G) \rightarrow \mathbb{N}$, we say G is f-paintable if Painter has a winning strategy in the Lister/Painter game when each vertex v starts with $f(v)$ tokens.

Def. If G is f-paintable when $f(v)=k$ for all $v \in V(G)$, then G is k-paintable.

Def. The least k such that G is k-paintable, denoted $\chi_{p}(G)$, is the paintability, paint number, online choice number, or online list-chromatic number of G.

Obs. k-paintable $\Rightarrow k$-choosable $\Rightarrow k$-colorable. Thus $\chi(G) \leq \chi_{\ell}(G) \leq \chi_{p}(G)$ for all G.

Definitions

Def. For $f: V(G) \rightarrow \mathbb{N}$, we say G is f-paintable if Painter has a winning strategy in the Lister/Painter game when each vertex v starts with $f(v)$ tokens.

Def. If G is f-paintable when $f(v)=k$ for all $v \in V(G)$, then G is k-paintable.

Def. The least k such that G is k-paintable, denoted $\chi_{p}(G)$, is the paintability, paint number, online choice number, or online list-chromatic number of G.

Obs. k-paintable $\Rightarrow k$-choosable $\Rightarrow k$-colorable. Thus $\chi(G) \leq \chi_{\ell}(G) \leq \chi_{p}(G)$ for all G.
Prop. (Erdős-Rubin-Taylor [1979]) $\chi_{\ell}\left(\Theta_{2,2,2 r}\right)=2$.

Definitions

Def. For $f: V(G) \rightarrow \mathbb{N}$, we say G is f-paintable if Painter has a winning strategy in the Lister/Painter game when each vertex v starts with $f(v)$ tokens.

Def. If G is f-paintable when $f(v)=k$ for all $v \in V(G)$, then G is k-paintable.

Def. The least k such that G is k-paintable, denoted $\chi_{p}(G)$, is the paintability, paint number, online choice number, or online list-chromatic number of G.

Obs. k-paintable $\Rightarrow k$-choosable $\Rightarrow k$-colorable. Thus $\chi(G) \leq \chi_{\ell}(G) \leq \chi_{p}(G)$ for all G.
Prop. (Erdős-Rubin-Taylor [1979]) $\chi_{\ell}\left(\Theta_{2,2,2 r}\right)=2$.
Ex. $\chi_{p}\left(\Theta_{2,2,4}\right)=3>2=\chi_{\ell}\left(\Theta_{2,2,4}\right)$.

Definitions

Def. For $f: V(G) \rightarrow \mathbb{N}$, we say G is f-paintable if Painter has a winning strategy in the Lister/Painter game when each vertex v starts with $f(v)$ tokens.

Def. If G is f-paintable when $f(v)=k$ for all $v \in V(G)$, then G is k-paintable.

Def. The least k such that G is k-paintable, denoted $\chi_{p}(G)$, is the paintability, paint number, online choice number, or online list-chromatic number of G.

Obs. k-paintable $\Rightarrow k$-choosable $\Rightarrow k$-colorable. Thus $\chi(G) \leq \chi_{\ell}(G) \leq \chi_{p}(G)$ for all G.
Prop. (Erdős-Rubin-Taylor [1979]) $\chi_{\ell}\left(\Theta_{2,2,2 r}\right)=2$.
Ex. $\chi_{p}\left(\Theta_{2,2,4}\right)=3>2=\chi_{\ell}\left(\Theta_{2,2,4}\right)$.
When $\chi(G) \leq k$ is known, $\chi_{\ell}(G) \leq k$ is stronger.

Definitions

Def. For $f: V(G) \rightarrow \mathbb{N}$, we say G is f-paintable if Painter has a winning strategy in the Lister/Painter game when each vertex v starts with $f(v)$ tokens.

Def. If G is f-paintable when $f(v)=k$ for all $v \in V(G)$, then G is k-paintable.

Def. The least k such that G is k-paintable, denoted $\chi_{p}(G)$, is the paintability, paint number, online choice number, or online list-chromatic number of G.

Obs. k-paintable $\Rightarrow k$-choosable $\Rightarrow k$-colorable. Thus $\chi(G) \leq \chi_{\ell}(G) \leq \chi_{p}(G)$ for all G.
Prop. (Erdős-Rubin-Taylor [1979]) $\chi_{\ell}\left(\Theta_{2,2,2 r}\right)=2$.
Ex. $\chi_{p}\left(\Theta_{2,2,4}\right)=3>2=\chi_{\ell}\left(\Theta_{2,2,4}\right)$.
When $\chi(G) \leq k$ is known, $\chi_{\ell}(G) \leq k$ is stronger.
When $\chi_{\ell}(G) \leq k$ is known, $\chi_{p}(G) \leq k$ is stronger.

Past examples

When G is connected and not in $\left\{K_{n}, C_{2 t+1}\right\}$,

$$
\chi(G) \leq \Delta(G)(\text { Brooks [1941] })
$$

$$
\chi_{\ell}(G) \leq \Delta(G)(\text { Vizing [1976] })
$$

$$
\chi_{p}(G) \leq \Delta(G)(\text { Hladký-Král-Schauz [2010] })
$$

Past examples

When G is connected and not in $\left\{K_{n}, C_{2 t+1}\right\}$,

$$
\begin{aligned}
& \chi(G) \leq \Delta(G)(\text { Brooks [1941] }) \\
& \chi_{\ell}(G) \leq \Delta(G)(\text { Vizing [1976] }) \\
& \chi_{p}(G) \leq \Delta(G)(\text { Hladký-Král-Schauz [2010] })
\end{aligned}
$$

When a suitable orientation exists,
G is k-choosable (Alon-Tarsi [1992])
G is k-paintable (Schauz [2010])

Past examples

When G is connected and not in $\left\{K_{n}, C_{2 t+1}\right\}$,

$$
\begin{aligned}
& \chi(G) \leq \Delta(G)(\text { Brooks [1941]) } \\
& \chi_{\ell}(G) \leq \Delta(G)(\text { Vizing [1976]) } \\
& \chi_{p}(G) \leq \Delta(G)(\text { Hladký-Král-Schauz [2010]) }
\end{aligned}
$$

When a suitable orientation exists,
G is k-choosable (Alon-Tarsi [1992])
G is k-paintable (Schauz [2010]) (non-algebraic)

Past examples

When G is connected and not in $\left\{K_{n}, C_{2 t+1}\right\}$,

$$
\begin{aligned}
& \chi(G) \leq \Delta(G)(\text { Brooks [1941]) } \\
& \chi_{\ell}(G) \leq \Delta(G)(\text { Vizing [1976]) } \\
& \chi_{p}(G) \leq \Delta(G)(\text { Hladký-Král-Schauz [2010]) }
\end{aligned}
$$

When a suitable orientation exists,
G is k-choosable (Alon-Tarsi [1992])
G is k-paintable (Schauz [2010]) (non-algebraic)
When G is planar,
$\chi(G) \leq 5$ (Heawood [1890])
$\chi_{\ell}(G) \leq 5$ (Thomassen [1994])
$\chi_{p}(G) \leq 5$ (Schauz [2009])

Past examples

When G is connected and not in $\left\{K_{n}, C_{2 t+1}\right\}$,

$$
\begin{aligned}
& \chi(G) \leq \Delta(G)(\text { Brooks [1941]) } \\
& \chi_{\ell}(G) \leq \Delta(G)(\text { Vizing [1976]) } \\
& \chi_{p}(G) \leq \Delta(G)(\text { Hladký-Král-Schauz [2010]) }
\end{aligned}
$$

When a suitable orientation exists,
G is k-choosable (Alon-Tarsi [1992])
G is k-paintable (Schauz [2010]) (non-algebraic)
When G is planar,
$\chi(G) \leq 5$ (Heawood [1890])
$\chi_{\ell}(G) \leq 5$ (Thomassen [1994])
$\chi_{p}(G) \leq 5$ (Schauz [2009])
When G is bipartite,
G is $\Delta(G)$-edge-colorable (König [1916])
G is $\Delta(G)$-edge-choosable (Galvin [1995])
G is $\Delta(G)$-edge-paintable (Schauz [2009])

Tournament Scheduling (Schauz [2010])

The line graph of K_{k} is
k-colorable (Exercise)
k-choosable (Häggkvist-Janssen [1997])
k-paintable (Schauz [2010])

Tournament Scheduling (Schauz [2010])

The line graph of K_{k} is
k-colorable (Exercise)
k-choosable (Häggkvist-Janssen [1997])
k-paintable (Schauz [2010])
Appl. Round-robin ultimate frisbee tournament

Tournament Scheduling (Schauz [2010])

The line graph of K_{k} is
k-colorable (Exercise)
k-choosable (Häggkvist-Janssen [1997])
k-paintable (Schauz [2010])
Appl. Round-robin ultimate frisbee tournament

- 5 teams (10 games total)
- Each team plays at most one game per day
- Equivalent to properly coloring edges of K_{5}

Tournament Scheduling (Schauz [2010])

The line graph of K_{k} is
k-colorable (Exercise)
k-choosable (Häggkvist-Janssen [1997])
k-paintable (Schauz [2010])
Appl. Round-robin ultimate frisbee tournament

- 5 teams (10 games total)
- Each team plays at most one game per day
- Equivalent to properly coloring edges of K_{5}

Ques. Can we relax teams' attendance requirements?

Tournament Scheduling (Schauz [2010])

The line graph of K_{k} is
k-colorable (Exercise)
k-choosable (Häggkvist-Janssen [1997])
k-paintable (Schauz [2010])
Appl. Round-robin ultimate frisbee tournament

- 5 teams (10 games total)
- Each team plays at most one game per day
- Equivalent to properly coloring edges of K_{5}

Ques. Can we relax teams' attendance requirements?
Scheduling the tournament is possible when
Duration Allowances (per team) Since $L\left(K_{5}\right)$ is
5 days no absences 5-colorable

Tournament Scheduling (Schauz [2010])

The line graph of K_{k} is
k-colorable (Exercise)
k-choosable (Häggkvist-Janssen [1997])
k-paintable (Schauz [2010])
Appl. Round-robin ultimate frisbee tournament

- 5 teams (10 games total)
- Each team plays at most one game per day
- Equivalent to properly coloring edges of K_{5}

Ques. Can we relax teams' attendance requirements?
Scheduling the tournament is possible when
Duration Allowances (per team) Since $L\left(K_{5}\right)$ is
5 days no absences 5-colorable
7 days one pre-specified absence 5-choosable

Tournament Scheduling (Schauz [2010])

The line graph of K_{k} is k-colorable (Exercise) k-choosable (Häggkvist-Janssen [1997]) k-paintable (Schauz [2010])

Appl. Round-robin ultimate frisbee tournament

- 5 teams (10 games total)
- Each team plays at most one game per day
- Equivalent to properly coloring edges of K_{5}

Ques. Can we relax teams' attendance requirements?
Scheduling the tournament is possible when
Duration Allowances (per team) Since $L\left(K_{5}\right)$ is
5 days no absences
7 days
7 days
one pre-specified absence one unspecified absence

5-colorable
5-choosable
5-paintable

Tools

Prop. (Degeneracy Tool) If $f(v)>d_{G}(v)$, then
G is f-paintable $\Leftrightarrow G-v$ is $\left.f\right|_{V(G-v)}$-paintable.

Tools

Prop. (Degeneracy Tool) If $f(v)>d_{G}(v)$, then
G is f-paintable $\Leftrightarrow G-v$ is $\left.f\right|_{V(G-v)}$-paintable.
Pf. Given a Painter strategy \mathbf{S} on $G-v$, postpone v when marked if S says to color a neighbor of v. This happens at most $d_{G}(v)$ times.

Tools

Prop. (Degeneracy Tool) If $f(v)>d_{G}(v)$, then
G is f-paintable $\Leftrightarrow G-v$ is $\left.f\right|_{v_{(G-v)}}$-paintable.
Pf. Given a Painter strategy S on $G-v$, postpone v when marked if S says to color a neighbor of v. This happens at most $d_{G}(v)$ times.

Def. The join of G and H, denoted $G \nLeftarrow H$, is the disjoint union $G+H$ plus edges joining all of $V(G)$ to all of $V(H)$.

Tools

Prop. (Degeneracy Tool) If $f(v)>d_{G}(v)$, then
G is f-paintable $\Leftrightarrow G-v$ is $\left.f\right|_{v_{(G-v)} \text {-paintable. }}$
Pf. Given a Painter strategy S on $G-v$, postpone v when marked if S says to color a neighbor of v. This happens at most $d_{G}(v)$ times.

Def. The join of G and H, denoted $G \oplus H$, is the disjoint union $G+H$ plus edges joining all of $V(G)$ to all of $V(H)$.

Thm. (CLMPTW) If G is k-paintable and $|V(G)| \leq \frac{t}{t-1} k$, then $G \nleftarrow \bar{K}_{t}$ is $(k+1)$-paintable.

Tools

Prop. (Degeneracy Tool) If $f(v)>d_{G}(v)$, then
G is f-paintable $\Leftrightarrow G-v$ is $\left.f\right|_{v_{(G-v)} \text {-paintable. }}$
Pf. Given a Painter strategy \mathbf{S} on $G-v$, postpone v when marked if S says to color a neighbor of v. This happens at most $d_{G}(v)$ times.

Def. The join of G and H, denoted $G \nLeftarrow H$, is the disjoint union $G+H$ plus edges joining all of $V(G)$ to all of $V(H)$.

Thm. (CLMPTW) If G is k-paintable and $|V(G)| \leq \frac{t}{t-1} k$, then $G \oplus \bar{K}_{t}$ is $(k+1)$-paintable.

Pf. Idea: Painter uses a k-paintability strategy \mathbf{S} on G, ignoring the added t-set T, until a special round where $M \cap T$ is colored instead. Each $v \in T$ has a token left, and G can be finished with the extra tokens in $V(G)$.

Ohba's Conjecture

Def. G is chromatic-choosable if $\chi_{\ell}(G)=\chi(G)$.
G is chromatic-paintable if $\chi_{p}(G)=\chi(G)$.

Ohba's Conjecture

Def. G is chromatic-choosable if $\chi_{\ell}(G)=\chi(G)$.
G is chromatic-paintable if $\chi_{p}(G)=\chi(G)$.
Conj. (Ohba [2002]) If $|V(G)| \leq 2 \chi(G)+1$, then G is chromatic-choosable. (Sharpness: $K_{4,2,2, \ldots, 2 \text {) }}$

Ohba's Conjecture

Def. G is chromatic-choosable if $\chi_{\ell}(G)=\chi(G)$.
G is chromatic-paintable if $\chi_{p}(G)=\chi(G)$.
Conj. (Ohba [2002]) If $|V(G)| \leq 2 \chi(G)+1$, then G is chromatic-choosable. (Sharpness: $K_{4,2,2, \ldots, 2 \text {) }}$

- Recently proved by Reed, Noel, and Wu!

Ohba's Conjecture

Def. G is chromatic-choosable if $\chi_{\ell}(G)=\chi(G)$.
G is chromatic-paintable if $\chi_{p}(G)=\chi(G)$.
Conj. (Ohba [2002]) If $|V(G)| \leq 2 \chi(G)+1$, then G is chromatic-choosable. (Sharpness: $K_{4,2,2, \ldots, 2 \text {) }}$

- Recently proved by Reed, Noel, and Wu!

Conj. (Huang-Wong-Zhu [2011]) If $|V(G)| \leq 2 \chi(G)$, then G is chromatic-paintable. (Sharpness: $K_{3,2,2, \ldots, 2}$)

Ohba's Conjecture

Def. G is chromatic-choosable if $\chi_{\ell}(G)=\chi(G)$.
G is chromatic-paintable if $\chi_{p}(G)=\chi(G)$.
Conj. (Ohba [2002]) If $|V(G)| \leq 2 \chi(G)+1$, then G is chromatic-choosable. (Sharpness: $K_{4,2,2, \ldots, 2 \text {) }}$

- Recently proved by Reed, Noel, and Wu!

Conj. (Huang-Wong-Zhu [2011]) If $|V(G)| \leq 2 \chi(G)$, then G is chromatic-paintable. (Sharpness: $K_{3,2,2, \ldots, 2}$)

Thm. (Ohba [2002]) If $|V(G)| \leq \chi(G)+\sqrt{2 \chi(G)}$, then G is chromatic-choosable.

Ohba's Conjecture

Def. G is chromatic-choosable if $\chi_{\ell}(G)=\chi(G)$.
G is chromatic-paintable if $\chi_{p}(G)=\chi(G)$.
Conj. (Ohba [2002]) If $|V(G)| \leq 2 \chi(G)+1$, then G is chromatic-choosable. (Sharpness: $K_{4,2,2, \ldots, 2 \text {) }}$

- Recently proved by Reed, Noel, and Wu!

Conj. (Huang-Wong-Zhu [2011]) If $|V(G)| \leq 2 \chi(G)$, then G is chromatic-paintable. (Sharpness: $K_{3,2,2, \ldots, 2}$)

Thm. (Ohba [2002]) If $|V(G)| \leq \chi(G)+\sqrt{2 \chi(G)}$, then G is chromatic-choosable.

Thm. $\chi_{p}(G) \leq k$ and $|V(G)| \leq \frac{t}{t-1} k \Rightarrow \chi_{p}\left(G \oplus \bar{K}_{t}\right) \leq k+1$.
Cor. $K_{2, \ldots, 2}$ is chromatic-paintable.

Ohba's Conjecture

Def. G is chromatic-choosable if $\chi_{\ell}(G)=\chi(G)$.
G is chromatic-paintable if $\chi_{p}(G)=\chi(G)$.
Conj. (Ohba [2002]) If $|V(G)| \leq 2 \chi(G)+1$, then G is chromatic-choosable. (Sharpness: $K_{4,2,2, \ldots, 2 \text {) }}$

- Recently proved by Reed, Noel, and Wu!

Conj. (Huang-Wong-Zhu [2011]) If $|V(G)| \leq 2 \chi(G)$, then G is chromatic-paintable. (Sharpness: $K_{3,2,2, \ldots, 2}$)

Thm. (Ohba [2002]) If $|V(G)| \leq \chi(G)+\sqrt{2 \chi(G)}$, then G is chromatic-choosable.

Thm. $\chi_{p}(G) \leq k$ and $|V(G)| \leq \frac{t}{t-1} k \Rightarrow \chi_{p}\left(G \oplus \bar{K}_{t}\right) \leq k+1$.
Cor. $K_{2, \ldots, 2}$ is chromatic-paintable.
Sharpness: $\chi_{p}\left(K_{3,2}\right)=2$, but $\chi_{p}\left(K_{3,2,2}\right)=4$ ([KKLZ]).

Ohba's Conjecture

Def. G is chromatic-choosable if $\chi_{\ell}(G)=\chi(G)$.
G is chromatic-paintable if $\chi_{p}(G)=\chi(G)$.
Conj. (Ohba [2002]) If $|V(G)| \leq 2 \chi(G)+1$, then G is chromatic-choosable. (Sharpness: $K_{4,2,2, \ldots, 2 \text {) }}$

- Recently proved by Reed, Noel, and Wu!

Conj. (Huang-Wong-Zhu [2011]) If $|V(G)| \leq 2 \chi(G)$, then G is chromatic-paintable. (Sharpness: $K_{3,2,2, \ldots, 2}$)

Thm. (Ohba [2002]) If $|V(G)| \leq \chi(G)+\sqrt{2 \chi(G)}$, then G is chromatic-choosable.

Thm. $\chi_{p}(G) \leq k$ and $|V(G)| \leq \frac{t}{t-1} k \Rightarrow \chi_{p}\left(G \oplus \bar{K}_{t}\right) \leq k+1$.
Cor. $K_{2, \ldots, 2}$ is chromatic-paintable.
Sharpness: $\chi_{p}\left(K_{3,2}\right)=2$, but $\chi_{p}\left(K_{3,2,2}\right)=4$ ([KKLZ]).
Cor. $|V(G)| \leq \chi(G)+2 \sqrt{\chi(G)-1} \Rightarrow$ chrom-paintable.

Complete Bipartite Graphs

Thm. (Vizing [1976]) $K_{k, r}$ is k-choosable $\Leftrightarrow r<k^{k}$.

Complete Bipartite Graphs

Thm. (Vizing [1976]) $K_{k, r}$ is k-choosable $\Leftrightarrow r<k^{k}$.
Thm. (CLMPTW) Consider $K_{k, r}$ with parts X of size k and Y of size r. If each vertex of Y has k tokens, then

Painter has a winning strategy $\Leftrightarrow r<\prod_{i=1}^{k} t_{i}$, where t_{1}, \ldots, t_{k} are the token counts in X.

Complete Bipartite Graphs

Thm. (Vizing [1976]) $K_{k, r}$ is k-choosable $\Leftrightarrow r<k^{k}$.
Thm. (CLMPTW) Consider $K_{k, r}$ with parts X of size k and Y of size r. If each vertex of Y has k tokens, then
Painter has a winning strategy $\Leftrightarrow r<\prod_{i=1}^{k} t_{i}$, where t_{1}, \ldots, t_{k} are the token counts in X.

Cor. $\quad K_{k, r}$ is k-paintable $\Leftrightarrow r<k^{k}$.

k-paintability for $K_{k, r}$

Thm. (CLMPTW) Consider $K_{k, r}$ with $|X|=k$ and $|Y|=r$. If $f(y)=k$ for $y \in Y$ and $f\left(x_{i}\right)=t_{i}$ for $x_{i} \in X$, then Painter has a winning strategy $\Leftrightarrow r<\prod_{i=1}^{k} t_{i}$.

k-paintability for $K_{k, r}$

Thm. (CLMPTW) Consider $K_{k, r}$ with $|X|=k$ and $|Y|=r$.
If $f(y)=k$ for $y \in Y$ and $f\left(x_{i}\right)=t_{i}$ for $x_{i} \in X$, then Painter has a winning strategy $\Leftrightarrow r<\prod_{i=1}^{k} t_{i}$.

Pf. $r=\prod t_{i} \Rightarrow K_{k, r}$ is not f-choosable. Let $L\left(x_{i}\right)=U_{i}$ with $\left|U_{i}\right|=t_{i}$ and pairwise disjoint.
Let $\{L(y): y \in Y\}=U_{1} \times \cdots \times U_{k}$.

k-paintability for $K_{k, r}$

Thm. (CLMPTW) Consider $K_{k, r}$ with $|X|=k$ and $|Y|=r$.
If $f(y)=k$ for $y \in Y$ and $f\left(x_{i}\right)=t_{i}$ for $x_{i} \in X$, then Painter has a winning strategy $\Leftrightarrow r<\prod_{i=1}^{k} t_{i}$.

Pf. $r=\prod t_{i} \Rightarrow K_{k, r}$ is not f-choosable. Let $L\left(x_{i}\right)=U_{i}$ with $\left|U_{i}\right|=t_{i}$ and pairwise disjoint.
Let $\{L(y): y \in Y\}=U_{1} \times \cdots \times U_{k}$.
Any coloring of X blocks all colors of some $y \in Y$.

k-paintability for $K_{k, r}$

Thm. (CLMPTW) Consider $K_{k, r}$ with $|X|=k$ and $|Y|=r$.
If $f(y)=k$ for $y \in Y$ and $f\left(x_{i}\right)=t_{i}$ for $x_{i} \in X$, then Painter has a winning strategy $\Leftrightarrow r<\prod_{i=1}^{k} t_{i}$.

Pf. $r=\prod t_{i} \Rightarrow K_{k, r}$ is not f-choosable. Let $L\left(x_{i}\right)=U_{i}$ with $\left|U_{i}\right|=t_{i}$ and pairwise disjoint. Let $\{L(y): y \in Y\}=U_{1} \times \cdots \times U_{k}$. Any coloring of X blocks all colors of some $y \in Y$.
$r<\prod t_{i} \Rightarrow$ Painter wins.

k-paintability for $K_{k, r}$

Thm. (CLMPTW) Consider $K_{k, r}$ with $|X|=k$ and $|Y|=r$.
If $f(y)=k$ for $y \in Y$ and $f\left(x_{i}\right)=t_{i}$ for $x_{i} \in X$, then Painter has a winning strategy $\Leftrightarrow r<\prod_{i=1}^{k} t_{i}$.

Pf. $r=\prod t_{i} \Rightarrow K_{k, r}$ is not f-choosable.
Let $L\left(x_{i}\right)=U_{i}$ with $\left|U_{i}\right|=t_{i}$ and pairwise disjoint.
Let $\{L(y): y \in Y\}=U_{1} \times \cdots \times U_{k}$.
Any coloring of X blocks all colors of some $y \in Y$.
$r<\prod t_{i} \Rightarrow$ Painter wins. $\quad \sum t_{i}=k \Rightarrow r=0 \Rightarrow$ win \checkmark.

k-paintability for $K_{k, r}$

Thm. (CLMPTW) Consider $K_{k, r}$ with $|X|=k$ and $|Y|=r$.
If $f(y)=k$ for $y \in Y$ and $f\left(x_{i}\right)=t_{i}$ for $x_{i} \in X$, then Painter has a winning strategy $\Leftrightarrow r<\prod_{i=1}^{k} t_{i}$.
Pf. $r=\prod t_{i} \Rightarrow K_{k, r}$ is not f-choosable. Let $L\left(x_{i}\right)=U_{i}$ with $\left|U_{i}\right|=t_{i}$ and pairwise disjoint.
Let $\{L(y): y \in Y\}=U_{1} \times \cdots \times U_{k}$.
Any coloring of X blocks all colors of some $y \in Y$.
$r<\prod t_{i} \Rightarrow$ Painter wins. $\quad \sum t_{i}=k \Rightarrow r=0 \Rightarrow$ win \checkmark.
$\sum t_{i}>k$: may assume $|M \cap X|=1$ (by degeneracy tool).

k-paintability for $K_{k, r}$

Thm. (CLMPTW) Consider $K_{k, r}$ with $|X|=k$ and $|Y|=r$.
If $f(y)=k$ for $y \in Y$ and $f\left(x_{i}\right)=t_{i}$ for $x_{i} \in X$, then Painter has a winning strategy $\Leftrightarrow r<\prod_{i=1}^{k} t_{i}$.

Pf. $r=\prod t_{i} \Rightarrow K_{k, r}$ is not f-choosable.
Let $L\left(x_{i}\right)=U_{i}$ with $\left|U_{i}\right|=t_{i}$ and pairwise disjoint.
Let $\{L(y): y \in Y\}=U_{1} \times \cdots \times U_{k}$.
Any coloring of X blocks all colors of some $y \in Y$.
$r<\prod t_{i} \Rightarrow$ Painter wins. $\quad \sum t_{i}=k \Rightarrow r=0 \Rightarrow$ win \checkmark.
$\sum t_{i}>k$: may assume $|M \cap X|=1$ (by degeneracy tool). Let $M \cap X=\left\{x_{k}\right\}$ and $q=|M \cap Y|$.

k-paintability for $K_{k, r}$

Thm. (CLMPTW) Consider $K_{k, r}$ with $|X|=k$ and $|Y|=r$.
If $f(y)=k$ for $y \in Y$ and $f\left(x_{i}\right)=t_{i}$ for $x_{i} \in X$, then Painter has a winning strategy $\Leftrightarrow r<\prod_{i=1}^{k} t_{i}$.
Pf. $r=\prod t_{i} \Rightarrow K_{k, r}$ is not f-choosable.
Let $L\left(x_{i}\right)=U_{i}$ with $\left|U_{i}\right|=t_{i}$ and pairwise disjoint.
Let $\{L(y): y \in Y\}=U_{1} \times \cdots \times U_{k}$.
Any coloring of X blocks all colors of some $y \in Y$.
$r<\prod t_{i} \Rightarrow$ Painter wins. $\sum t_{i}=k \Rightarrow r=0 \Rightarrow$ win \checkmark.
$\sum t_{i}>k$: may assume $|M \cap X|=1$ (by degeneracy tool). Let $M \cap X=\left\{\chi_{k}\right\}$ and $q=|M \cap Y|$.
Case 1: $q<\prod_{i=1}^{k-1} t_{i}$. Painter colors x_{k}.
$Y-M$ is degenerate; apply ind. hyp. to $\left(X-x_{k}\right) \cup(M \cap Y)$.

k-paintability for $K_{k, r}$

Thm. (CLMPTW) Consider $K_{k, r}$ with $|X|=k$ and $|Y|=r$. If $f(y)=k$ for $y \in Y$ and $f\left(x_{i}\right)=t_{i}$ for $x_{i} \in X$, then Painter has a winning strategy $\Leftrightarrow r<\prod_{i=1}^{k} t_{i}$.
Pf. $r=\prod t_{i} \Rightarrow K_{k, r}$ is not f-choosable.
Let $L\left(x_{i}\right)=U_{i}$ with $\left|U_{i}\right|=t_{i}$ and pairwise disjoint.
Let $\{L(y): y \in Y\}=U_{1} \times \cdots \times U_{k}$.
Any coloring of X blocks all colors of some $y \in Y$.
$r<\prod t_{i} \Rightarrow$ Painter wins. $\quad \sum t_{i}=k \Rightarrow r=0 \Rightarrow$ win \checkmark.
$\sum t_{i}>k$: may assume $|M \cap X|=1$ (by degeneracy tool). Let $M \cap X=\left\{x_{k}\right\}$ and $q=|M \cap Y|$.
Case 1: $q<\prod_{i=1}^{k-1} t_{i}$. Painter colors x_{k}.
$Y-M$ is degenerate; apply ind. hyp. to $\left(X-\chi_{k}\right) \cup(M \cap Y)$.
Case 2: $q \geq \prod_{i=1}^{k-1} t_{i}$. Painter colors $M \cap Y$.
$|Y-M|<\prod t_{i}-q \leq \prod_{i=1}^{k-1} t_{i}\left(t_{k}-1\right) ;$ ind. hyp. applies!

Open Question

Ques. Can $\chi_{p}(G)-\chi_{\ell}(G)>1$?

Open Question

Ques. $\operatorname{Can} \chi_{p}(G)-\chi_{\ell}(G)>1$?

Graphs to consider:
Possibility 1: Complete bipartite graphs

$$
\begin{aligned}
& \chi_{\ell}\left(K_{k, k}\right) \leq \lg k-\left(\frac{1}{2}+o(1)\right) \lg \lg k(\text { Alon }) \\
& \chi_{p}\left(K_{k, k}\right) \leq \lg k(K K L Z[2012])
\end{aligned}
$$

Open Question

Ques. $\operatorname{Can} \chi_{p}(G)-\chi_{\ell}(G)>1$?

Graphs to consider:
Possibility 1: Complete bipartite graphs

$$
\begin{aligned}
& \chi_{\ell}\left(K_{k, k}\right) \leq \lg k-\left(\frac{1}{2}+o(1)\right) \lg \lg k(\text { Alon }) \\
& \chi_{p}\left(K_{k, k}\right) \leq \lg k(K K L Z[2012])
\end{aligned}
$$

Possibility 2: Complete multipartite graphs

$$
\begin{aligned}
& \chi_{\ell}\left(K_{3 * k}\right)=\left\lceil\frac{4 k-1}{3}\right\rceil(\text { Kierstead }[2000]) \\
& \chi_{p}\left(K_{3 * k}\right) \leq \frac{3}{2} k(\text { KMZ }[2013+])
\end{aligned}
$$

Open Question

Ques. Can $\chi_{p}(G)-\chi_{\ell}(G)>1$?
Graphs to consider:
Possibility 1: Complete bipartite graphs

$$
\begin{aligned}
& \chi_{\ell}\left(K_{k, k}\right) \leq \lg k-\left(\frac{1}{2}+o(1)\right) \lg \lg k \text { (Alon) } \\
& \chi_{p}\left(K_{k, k}\right) \leq \lg k(K K L Z[2012])
\end{aligned}
$$

Possibility 2: Complete multipartite graphs

$$
\begin{aligned}
& \chi_{\ell}\left(K_{3 * k}\right)=\left\lceil\frac{4 k-1}{3}\right\rceil(\text { Kierstead [2000] }) \\
& \chi_{p}\left(K_{3 * k}\right) \leq \frac{3}{2} k(\text { KMZ }[2013+])
\end{aligned}
$$

Ques. What is $\min \left\{r: K_{k+j, r}\right.$ is not k-paintable $\}$?

Open Question

Ques. Can $\chi_{p}(G)-\chi_{\ell}(G)>1$?
Graphs to consider:
Possibility 1: Complete bipartite graphs

$$
\begin{aligned}
& \chi_{\ell}\left(K_{k, k}\right) \leq \lg k-\left(\frac{1}{2}+o(1)\right) \lg \lg k \text { (Alon) } \\
& \chi_{p}\left(K_{k, k}\right) \leq \lg k(K K L Z[2012])
\end{aligned}
$$

Possibility 2: Complete multipartite graphs

$$
\begin{aligned}
& \chi_{\ell}\left(K_{3 * k}\right)=\left\lceil\frac{4 k-1}{3}\right\rceil(\text { Kierstead }[2000]) \\
& \chi_{p}\left(K_{3 * k}\right) \leq \frac{3}{2} k(\text { KMZ }[2013+])
\end{aligned}
$$

Ques. What is $\min \left\{r: K_{k+j, r}\right.$ is not k-paintable $\}$?
Hard to compute for $j>0$!

Open Question

Ques. Can $\chi_{p}(G)-\chi_{\ell}(G)>1$?
Graphs to consider:
Possibility 1: Complete bipartite graphs

$$
\begin{aligned}
& \chi_{\ell}\left(K_{k, k}\right) \leq \lg k-\left(\frac{1}{2}+o(1)\right) \lg \lg k \text { (Alon) } \\
& \chi_{p}\left(K_{k, k}\right) \leq \lg k(K K L Z[2012])
\end{aligned}
$$

Possibility 2: Complete multipartite graphs

$$
\begin{aligned}
& \chi_{\ell}\left(K_{3 * k}\right)=\left\lceil\frac{4 k-1}{3}\right\rceil(\text { Kierstead }[2000]) \\
& \chi_{p}\left(K_{3 * k}\right) \leq \frac{3}{2} k(\text { KMZ }[2013+])
\end{aligned}
$$

Ques. What is $\min \left\{r: K_{k+j, r}\right.$ is not k-paintable $\}$?
Hard to compute for $j>0$!

Thank You!

