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Def. A list assignment L assigns each  ∈ V(G) a list
L() of available colors; G is L-colorable if G has a
proper coloring giving each vertex  a color from L().

Def. A graph G is ƒ -choosable if G is L-colorable
whenever that |L()| ≥ ƒ () for all .

Def. G is k-choosable if it is ƒ -choosable when ƒ () = k
for all .

The least such k is the choosability, choice number, or
list-chromatic number of G, denoted χℓ(G).

Goal: Consider an online version of choosability.
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Online Choosability (Zhu [2009])

Let the coloring algorithm for choosability of a graph G
be called Painter.

Ques. What if the algorithm (Painter) sees each list
only a little bit at a time?

Suppose on round , Painter must decide which vertices
receive color  while only seeing what happened on
earlier rounds.

i.e. on round , Painter doesn’t know which vertices
have + 1 in their lists.

Ques. How much worse is this for Painter?

Worst-case analysis is modeled by the following game:
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Two players: Lister and Painter on a graph G with a
positive number of tokens at each vertex.

Round: Lister presents (marks) a set M of the
uncolored vxs, spending one token at each marked vtx.

Painter selects a subset of M forming an independent
set in G; these vertices are assigned a color distinct
from previously used colors.

Goal: Lister wins by presenting a vertex with no tokens.
Painter wins by coloring all vertices in the graph.

• Lister can use a list assignment L as a “schedule,”
allocating |L()| tokens to each vertex .
If in round , Lister presents { :  ∈ L()}, then Painter
wins against this strategy ⇔ G is L-colorable.

• An adaptive Lister, responding to Painter’s earlier
moves, may do better.



Example Game

Let’s play the Lister/Painter game on Θ2,2,4.

2 2

2

2

2

2

2



Example Game

Let’s play the Lister/Painter game on Θ2,2,4.

2 2

2

2

2

2

21

1



Example Game

Let’s play the Lister/Painter game on Θ2,2,4.

2 2

2

2

2

2

2

1



Example Game

Let’s play the Lister/Painter game on Θ2,2,4.

2 2

2

2

2

2

2

1

110



Example Game

Let’s play the Lister/Painter game on Θ2,2,4.

2 2

2

2

2

2

2

1

1



Example Game

Let’s play the Lister/Painter game on Θ2,2,4.

2 2

2

2

2

2

2

1

1

1

10



Example Game

Let’s play the Lister/Painter game on Θ2,2,4.

2 2

2

2

2

2

2

1

1

1



Example Game

Let’s play the Lister/Painter game on Θ2,2,4.

2 2

2

2

2

2

2

1

1 11

1

10



Example Game

Let’s play the Lister/Painter game on Θ2,2,4.

2 2

2

2

2

2

2

1

1

1

1 1



Example Game

Let’s play the Lister/Painter game on Θ2,2,4.

2 2

2

2

2

2

2

1

1

1

1

1

1 10



Example Game

Let’s play the Lister/Painter game on Θ2,2,4.

2 2

2

2

2

2

2

1

1

1

1 1

1



Example Game

Let’s play the Lister/Painter game on Θ2,2,4.

2 2

2

2

2

2

2

1

11

1

1

1 1

10

0



Example Game

Let’s play the Lister/Painter game on Θ2,2,4.

2 2

2

2

2

2

2

1

1

1

1 1

1

×



Example Game
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Conclude: Lister wins on Θ2,2,4 when each vertex has
2 tokens.
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χp(G) ≤ Δ(G) (Hladký–Král–Schauz [2010])

When a suitable orientation exists,
G is k-choosable (Alon–Tarsi [1992])
G is k-paintable (Schauz [2010]) (non-algebraic)

When G is planar,
χ(G) ≤ 5 (Heawood [1890])
χℓ(G) ≤ 5 (Thomassen [1994])
χp(G) ≤ 5 (Schauz [2009])

When G is bipartite,
G is Δ(G)-edge-colorable (König [1916])
G is Δ(G)-edge-choosable (Galvin [1995])
G is Δ(G)-edge-paintable (Schauz [2009])
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Tournament Scheduling (Schauz [2010])

The line graph of Kk is
k-colorable (Exercise)
k-choosable (Häggkvist–Janssen [1997])
k-paintable (Schauz [2010])

Appl. Round-robin ultimate frisbee tournament
◮ 5 teams (10 games total)

◮ Each team plays at most one game per day

◮ Equivalent to properly coloring edges of K5

Ques. Can we relax teams’ attendance requirements?

Scheduling the tournament is possible when
Duration Allowances (per team) Since L(K5) is

5 days no absences 5-colorable
7 days one pre-specified absence 5-choosable
7 days one unspecified absence 5-paintable



Tools

Prop. (Degeneracy Tool) If ƒ () > dG(), then
G is ƒ -paintable ⇔ G−  is ƒ |V(G−)-paintable.



Tools

Prop. (Degeneracy Tool) If ƒ () > dG(), then
G is ƒ -paintable ⇔ G−  is ƒ |V(G−)-paintable.

Pf. Given a Painter strategy S on G− , postpone 
when marked if S says to color a neighbor of . This
happens at most dG() times.



Tools

Prop. (Degeneracy Tool) If ƒ () > dG(), then
G is ƒ -paintable ⇔ G−  is ƒ |V(G−)-paintable.

Pf. Given a Painter strategy S on G− , postpone 
when marked if S says to color a neighbor of . This
happens at most dG() times.

Def. The join of G and H, denoted G H, is the disjoint
union G+H plus edges joining all of V(G) to all of V(H).



Tools

Prop. (Degeneracy Tool) If ƒ () > dG(), then
G is ƒ -paintable ⇔ G−  is ƒ |V(G−)-paintable.

Pf. Given a Painter strategy S on G− , postpone 
when marked if S says to color a neighbor of . This
happens at most dG() times.

Def. The join of G and H, denoted G H, is the disjoint
union G+H plus edges joining all of V(G) to all of V(H).

Thm. (CLMPTW) If G is k-paintable and |V(G)| ≤ t
t−1

k,

then G K t is (k + 1)-paintable.



Tools

Prop. (Degeneracy Tool) If ƒ () > dG(), then
G is ƒ -paintable ⇔ G−  is ƒ |V(G−)-paintable.

Pf. Given a Painter strategy S on G− , postpone 
when marked if S says to color a neighbor of . This
happens at most dG() times.

Def. The join of G and H, denoted G H, is the disjoint
union G+H plus edges joining all of V(G) to all of V(H).

Thm. (CLMPTW) If G is k-paintable and |V(G)| ≤ t
t−1

k,

then G K t is (k + 1)-paintable.

Pf. Idea: Painter uses a k-paintability strategy S on G,
ignoring the added t-set T, until a special round where
M ∩ T is colored instead. Each  ∈ T has a token left,
and G can be finished with the extra tokens in V(G).
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Def. G is chromatic-choosable if χℓ(G) = χ(G).
G is chromatic-paintable if χp(G) = χ(G).

Conj. (Ohba [2002]) If |V(G)| ≤ 2χ(G) + 1, then G is
chromatic-choosable. (Sharpness: K4,2,2,...,2)

• Recently proved by Reed, Noel, and Wu!

Conj. (Huang–Wong–Zhu [2011]) If |V(G)| ≤ 2χ(G),
then G is chromatic-paintable. (Sharpness: K3,2,2,...,2)

Thm. (Ohba [2002]) If |V(G)| ≤ χ(G) +
p

2χ(G),
then G is chromatic-choosable.

Thm. χp(G)≤k and |V(G)|≤ t
t−1

k ⇒ χp(G K t) ≤ k+1.

Cor. K2,...,2 is chromatic-paintable.

Sharpness: χp(K3,2) = 2, but χp(K3,2,2) = 4 ([KKLZ]).

Cor. |V(G)| ≤ χ(G) + 2
p

χ(G)−1 ⇒ chrom-paintable.
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t > k: may assume |M ∩ X| = 1 (by degeneracy tool).
Let M ∩ X = {k} and q = |M ∩ Y |.

Case 1: q <
∏k−1

=1
t. Painter colors k.

Y−M is degenerate; apply ind. hyp. to (X−k) ∪ (M∩Y).

Case 2: q ≥
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=1
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|Y −M| <
∏

t − q ≤
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t(tk − 1); ind. hyp. applies!
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Ques. Can χp(G)− χℓ(G) > 1?

Graphs to consider:

Possibility 1: Complete bipartite graphs
χℓ(Kk,k) ≤ lg k −
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χp(Kk,k) ≤ lg k (KKLZ [2012])

Possibility 2: Complete multipartite graphs

χℓ(K3∗k) =
l

4k−1
3

m

(Kierstead [2000])

χp(K3∗k) ≤
3
2
k (KMZ [2013+])

Ques. What is min{r : Kk+j,r is not k-paintable}?

Hard to compute for j > 0!

Thank You!
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