Online Scheduling and Paintability

Thomas Mahoney

University of Illinois at Urbana-Champaign tmahone2@math.uiuc.edu

Joint work with James Carraher, Sarah Loeb, Gregory J. Puleo, Mu-Tsun Tsai, and Douglas West

Def. A list assignment *L* assigns each $v \in V(G)$ a list L(v) of available colors; *G* is *L*-colorable if *G* has a proper coloring giving each vertex v a color from L(v).

Def. A list assignment *L* assigns each $v \in V(G)$ a list L(v) of available colors; *G* is *L*-colorable if *G* has a proper coloring giving each vertex v a color from L(v).

Def. A graph G is *f*-choosable if G is L-colorable whenever that $|L(v)| \ge f(v)$ for all v.

Def. A list assignment *L* assigns each $v \in V(G)$ a list L(v) of available colors; *G* is *L*-colorable if *G* has a proper coloring giving each vertex v a color from L(v).

Def. A graph G is f-choosable if G is L-colorable whenever that $|L(v)| \ge f(v)$ for all v.

Def. *G* is *k*-choosable if it is *f*-choosable when f(v) = k for all *v*.

Def. A list assignment *L* assigns each $v \in V(G)$ a list L(v) of available colors; *G* is *L*-colorable if *G* has a proper coloring giving each vertex v a color from L(v).

Def. A graph G is f-choosable if G is L-colorable whenever that $|L(v)| \ge f(v)$ for all v.

Def. *G* is *k*-choosable if it is *f*-choosable when f(v) = k for all *v*.

The least such k is the choosability, choice number, or list-chromatic number of G, denoted $\chi_{\ell}(G)$.

Def. A list assignment *L* assigns each $v \in V(G)$ a list L(v) of available colors; *G* is *L*-colorable if *G* has a proper coloring giving each vertex v a color from L(v).

Def. A graph G is f-choosable if G is L-colorable whenever that $|L(v)| \ge f(v)$ for all v.

Def. G is k-choosable if it is f-choosable when f(v) = k for all v.

The least such k is the choosability, choice number, or list-chromatic number of G, denoted $\chi_{\ell}(G)$.

Goal: Consider an online version of choosability.

Let the coloring algorithm for choosability of a graph *G* be called Painter.

Let the coloring algorithm for choosability of a graph *G* be called Painter.

Ques. What if the algorithm (Painter) sees each list only a little bit at a time?

Let the coloring algorithm for choosability of a graph *G* be called Painter.

Ques. What if the algorithm (Painter) sees each list only a little bit at a time?

Suppose on round *i*, Painter must decide which vertices receive color *i* while only seeing what happened on earlier rounds.

Let the coloring algorithm for choosability of a graph *G* be called Painter.

Ques. What if the algorithm (Painter) sees each list only a little bit at a time?

Suppose on round *i*, Painter must decide which vertices receive color *i* while only seeing what happened on earlier rounds.

i.e. on round *i*, Painter doesn't know which vertices have i + 1 in their lists.

Let the coloring algorithm for choosability of a graph *G* be called Painter.

Ques. What if the algorithm (Painter) sees each list only a little bit at a time?

Suppose on round *i*, Painter must decide which vertices receive color *i* while only seeing what happened on earlier rounds.

i.e. on round *i*, Painter doesn't know which vertices have i + 1 in their lists.

Ques. How much worse is this for Painter?

Let the coloring algorithm for choosability of a graph *G* be called Painter.

Ques. What if the algorithm (Painter) sees each list only a little bit at a time?

Suppose on round *i*, Painter must decide which vertices receive color *i* while only seeing what happened on earlier rounds.

i.e. on round *i*, Painter doesn't know which vertices have i + 1 in their lists.

Ques. How much worse is this for Painter?

Worst-case analysis is modeled by the following game:

Two players: Lister and Painter on a graph *G* with a positive number of tokens at each vertex.

Two players: Lister and Painter on a graph *G* with a positive number of tokens at each vertex.

Round: Lister presents (marks) a set *M* of the uncolored vxs, spending one token at each marked vtx.

Two players: Lister and Painter on a graph *G* with a positive number of tokens at each vertex.

Round: Lister presents (marks) a set *M* of the uncolored vxs, spending one token at each marked vtx. Painter selects a subset of *M* forming an independent set in *G*; these vertices are assigned a color distinct from previously used colors.

Two players: Lister and Painter on a graph *G* with a positive number of tokens at each vertex.

Round: Lister presents (marks) a set *M* of the uncolored vxs, spending one token at each marked vtx. Painter selects a subset of *M* forming an independent set in *G*; these vertices are assigned a color distinct from previously used colors.

Goal: Lister wins by presenting a vertex with no tokens. Painter wins by coloring all vertices in the graph.

Two players: Lister and Painter on a graph *G* with a positive number of tokens at each vertex.

Round: Lister presents (marks) a set *M* of the uncolored vxs, spending one token at each marked vtx. Painter selects a subset of *M* forming an independent set in *G*; these vertices are assigned a color distinct from previously used colors.

Goal: Lister wins by presenting a vertex with no tokens. Painter wins by coloring all vertices in the graph.

• Lister can use a list assignment *L* as a "schedule," allocating |L(v)| tokens to each vertex *v*.

Two players: Lister and Painter on a graph *G* with a positive number of tokens at each vertex.

Round: Lister presents (marks) a set *M* of the uncolored vxs, spending one token at each marked vtx. Painter selects a subset of *M* forming an independent set in *G*; these vertices are assigned a color distinct from previously used colors.

Goal: Lister wins by presenting a vertex with no tokens. Painter wins by coloring all vertices in the graph.

• Lister can use a list assignment *L* as a "schedule," allocating |L(v)| tokens to each vertex v. If in round *i*, Lister presents $\{v : i \in L(v)\}$, then Painter wins against this strategy \Leftrightarrow *G* is *L*-colorable.

Two players: Lister and Painter on a graph *G* with a positive number of tokens at each vertex.

Round: Lister presents (marks) a set *M* of the uncolored vxs, spending one token at each marked vtx. Painter selects a subset of *M* forming an independent set in *G*; these vertices are assigned a color distinct from previously used colors.

Goal: Lister wins by presenting a vertex with no tokens. Painter wins by coloring all vertices in the graph.

• Lister can use a list assignment *L* as a "schedule," allocating |L(v)| tokens to each vertex v. If in round *i*, Lister presents $\{v : i \in L(v)\}$, then Painter wins against this strategy \Leftrightarrow *G* is *L*-colorable.

• An adaptive Lister, responding to Painter's earlier moves, may do better.

Let's play the Lister/Painter game on $\Theta_{2,2,4}$.

Conclude: Lister wins on $\Theta_{2,2,4}$ when each vertex has 2 tokens.

Definitions

Def. For $f: V(G) \to \mathbb{N}$, we say G is f-paintable if Painter has a winning strategy in the Lister/Painter game when each vertex v starts with f(v) tokens.

Definitions

Def. For $f: V(G) \to \mathbb{N}$, we say G is f-paintable if Painter has a winning strategy in the Lister/Painter game when each vertex v starts with f(v) tokens.

Def. If G is f-paintable when f(v) = k for all $v \in V(G)$, then G is k-paintable.

Definitions

Def. For $f: V(G) \rightarrow \mathbb{N}$, we say G is f-paintable if Painter has a winning strategy in the Lister/Painter game when each vertex v starts with f(v) tokens.

Def. If G is f-paintable when f(v) = k for all $v \in V(G)$, then G is k-paintable.

Def. The least k such that G is k-paintable, denoted $\chi_p(G)$, is the paintability, paint number, online choice number, or online list-chromatic number of G.

Def. For $f: V(G) \rightarrow \mathbb{N}$, we say G is f-paintable if Painter has a winning strategy in the Lister/Painter game when each vertex v starts with f(v) tokens.

Def. If G is f-paintable when f(v) = k for all $v \in V(G)$, then G is k-paintable.

Def. The least k such that G is k-paintable, denoted $\chi_p(G)$, is the paintability, paint number, online choice number, or online list-chromatic number of G.

Obs. k-paintable \Rightarrow k-choosable \Rightarrow k-colorable. Thus $\chi(G) \le \chi_{\ell}(G) \le \chi_{\rho}(G)$ for all G.

Def. For $f: V(G) \rightarrow \mathbb{N}$, we say G is f-paintable if Painter has a winning strategy in the Lister/Painter game when each vertex v starts with f(v) tokens.

Def. If G is f-paintable when f(v) = k for all $v \in V(G)$, then G is k-paintable.

Def. The least k such that G is k-paintable, denoted $\chi_p(G)$, is the paintability, paint number, online choice number, or online list-chromatic number of G.

Obs. k-paintable \Rightarrow k-choosable \Rightarrow k-colorable. Thus $\chi(G) \le \chi_{\ell}(G) \le \chi_{\rho}(G)$ for all G.

Prop. (Erdős–Rubin–Taylor [1979]) $\chi_l(\Theta_{2,2,2r}) = 2$.

Def. For $f: V(G) \rightarrow \mathbb{N}$, we say G is f-paintable if Painter has a winning strategy in the Lister/Painter game when each vertex v starts with f(v) tokens.

Def. If G is f-paintable when f(v) = k for all $v \in V(G)$, then G is k-paintable.

Def. The least k such that G is k-paintable, denoted $\chi_p(G)$, is the paintability, paint number, online choice number, or online list-chromatic number of G.

Obs. k-paintable \Rightarrow k-choosable \Rightarrow k-colorable. Thus $\chi(G) \le \chi_{\ell}(G) \le \chi_{\rho}(G)$ for all G.

Prop. (Erdős–Rubin–Taylor [1979]) $\chi_l(\Theta_{2,2,2r}) = 2$.

Ex. $\chi_p(\Theta_{2,2,4}) = 3 > 2 = \chi_\ell(\Theta_{2,2,4}).$

Def. For $f: V(G) \rightarrow \mathbb{N}$, we say G is f-paintable if Painter has a winning strategy in the Lister/Painter game when each vertex v starts with f(v) tokens.

Def. If G is f-paintable when f(v) = k for all $v \in V(G)$, then G is k-paintable.

Def. The least k such that G is k-paintable, denoted $\chi_p(G)$, is the paintability, paint number, online choice number, or online list-chromatic number of G.

Obs. k-paintable \Rightarrow k-choosable \Rightarrow k-colorable. Thus $\chi(G) \le \chi_{\ell}(G) \le \chi_{\rho}(G)$ for all G.

Prop. (Erdős–Rubin–Taylor [1979]) $\chi_l(\Theta_{2,2,2r}) = 2$.

Ex. $\chi_p(\Theta_{2,2,4}) = 3 > 2 = \chi_\ell(\Theta_{2,2,4}).$

When $\chi(G) \le k$ is known, $\chi_{\ell}(G) \le k$ is stronger.

Def. For $f: V(G) \rightarrow \mathbb{N}$, we say G is f-paintable if Painter has a winning strategy in the Lister/Painter game when each vertex v starts with f(v) tokens.

Def. If G is f-paintable when f(v) = k for all $v \in V(G)$, then G is k-paintable.

Def. The least k such that G is k-paintable, denoted $\chi_p(G)$, is the paintability, paint number, online choice number, or online list-chromatic number of G.

Obs. *k*-paintable \Rightarrow *k*-choosable \Rightarrow *k*-colorable. Thus $\chi(G) \le \chi_{\ell}(G) \le \chi_{\rho}(G)$ for all *G*.

Prop. (Erdős–Rubin–Taylor [1979]) $\chi_{l}(\Theta_{2,2,2r}) = 2$.

Ex. $\chi_p(\Theta_{2,2,4}) = 3 > 2 = \chi_\ell(\Theta_{2,2,4}).$

When $\chi(G) \le k$ is known, $\chi_{\ell}(G) \le k$ is stronger. When $\chi_{\ell}(G) \le k$ is known, $\chi_{p}(G) \le k$ is stronger.

When G is connected and not in $\{K_n, C_{2t+1}\}$, $\chi(G) \leq \Delta(G)$ (Brooks [1941]) $\chi_{\ell}(G) \leq \Delta(G)$ (Vizing [1976]) $\chi_p(G) \leq \Delta(G)$ (Hladký–Král–Schauz [2010])

When G is connected and not in $\{K_n, C_{2t+1}\}$, $\chi(G) \leq \Delta(G)$ (Brooks [1941]) $\chi_{\ell}(G) \leq \Delta(G)$ (Vizing [1976]) $\chi_{p}(G) \leq \Delta(G)$ (Hladký–Král–Schauz [2010])

When a suitable orientation exists, *G* is *k*-choosable (Alon–Tarsi [1992]) *G* is *k*-paintable (Schauz [2010])

When G is connected and not in $\{K_n, C_{2t+1}\}$, $\chi(G) \leq \Delta(G)$ (Brooks [1941]) $\chi_{\ell}(G) \leq \Delta(G)$ (Vizing [1976]) $\chi_{\rho}(G) \leq \Delta(G)$ (Hladký–Král–Schauz [2010])

When a suitable orientation exists,

- G is k-choosable (Alon–Tarsi [1992])
- G is k-paintable (Schauz [2010]) (non-algebraic)

When G is connected and not in $\{K_n, C_{2t+1}\}$, $\chi(G) \leq \Delta(G)$ (Brooks [1941]) $\chi_{\ell}(G) \leq \Delta(G)$ (Vizing [1976]) $\chi_{\rho}(G) \leq \Delta(G)$ (Hladký–Král–Schauz [2010])

When a suitable orientation exists,

- G is k-choosable (Alon–Tarsi [1992])
- G is k-paintable (Schauz [2010]) (non-algebraic)

When G is planar, $\chi(G) \leq 5$ (Heawood [1890]) $\chi_{\ell}(G) \leq 5$ (Thomassen [1994]) $\chi_{p}(G) \leq 5$ (Schauz [2009])

When G is connected and not in $\{K_n, C_{2t+1}\}$, $\chi(G) \leq \Delta(G)$ (Brooks [1941]) $\chi_{\ell}(G) \leq \Delta(G)$ (Vizing [1976]) $\chi_{\rho}(G) \leq \Delta(G)$ (Hladký–Král–Schauz [2010])

When a suitable orientation exists,

- G is k-choosable (Alon–Tarsi [1992])
- G is k-paintable (Schauz [2010]) (non-algebraic)

When G is planar, $\chi(G) \leq 5$ (Heawood [1890]) $\chi_{\ell}(G) \leq 5$ (Thomassen [1994]) $\chi_{p}(G) \leq 5$ (Schauz [2009])

When G is bipartite,

G is $\Delta(G)$ -edge-colorable (König [1916]) G is $\Delta(G)$ -edge-choosable (Galvin [1995]) G is $\Delta(G)$ -edge-paintable (Schauz [2009])

The line graph of K_k is

k-colorable (Exercise)

- k-choosable (Häggkvist-Janssen [1997])
- k-paintable (Schauz [2010])

The line graph of K_k is *k*-colorable (Exercise)

- k-choosable (Häggkvist–Janssen [1997])
- k-paintable (Schauz [2010])

Appl. Round-robin ultimate frisbee tournament

The line graph of K_k is

k-colorable (Exercise)

- k-choosable (Häggkvist–Janssen [1997])
- k-paintable (Schauz [2010])

Appl. Round-robin ultimate frisbee tournament

- 5 teams (10 games total)
- Each team plays at most one game per day
- Equivalent to properly coloring edges of K₅

The line graph of K_k is

k-colorable (Exercise)

- k-choosable (Häggkvist-Janssen [1997])
- k-paintable (Schauz [2010])

Appl. Round-robin ultimate frisbee tournament

- 5 teams (10 games total)
- Each team plays at most one game per day
- Equivalent to properly coloring edges of K₅

Ques. Can we relax teams' attendance requirements?

The line graph of K_k is

k-colorable (Exercise)

- k-choosable (Häggkvist-Janssen [1997])
- k-paintable (Schauz [2010])

Appl. Round-robin ultimate frisbee tournament

- 5 teams (10 games total)
- Each team plays at most one game per day
- Equivalent to properly coloring edges of K₅

Ques. Can we relax teams' attendance requirements?

Scheduling the tournament is possible whenDurationAllowances (per team)Since L(K5) is5 daysno absences5-colorable

The line graph of K_k is

k-colorable (Exercise)

- k-choosable (Häggkvist-Janssen [1997])
- k-paintable (Schauz [2010])

Appl. Round-robin ultimate frisbee tournament

- 5 teams (10 games total)
- Each team plays at most one game per day
- Equivalent to properly coloring edges of K₅

Ques. Can we relax teams' attendance requirements?

Scheduling the tournament is possible when

Duration Allowances (per team)

- 5 days no absences
- 7 days one pre-specified absence 5-choosable

Since $L(K_5)$ is 5-colorable 5-choosable

The line graph of K_k is

k-colorable (Exercise)

- k-choosable (Häggkvist–Janssen [1997])
- k-paintable (Schauz [2010])

Appl. Round-robin ultimate frisbee tournament

- 5 teams (10 games total)
- Each team plays at most one game per day
- Equivalent to properly coloring edges of K_5

Ques. Can we relax teams' attendance requirements?

Scheduling the tournament is possible when

Duration Allowances (per team)

- 5 days no absences
- one pre-specified absence 5-choosable 7 days
- 7 days one unspecified absence
- Since $L(K_5)$ is
- 5-colorable
- 5-paintable

Prop. (Degeneracy Tool) If $f(v) > d_G(v)$, then *G* is *f*-paintable \Leftrightarrow G - v is $f|_{V(G-v)}$ -paintable.

Prop. (Degeneracy Tool) If $f(v) > d_G(v)$, then *G* is *f*-paintable \Leftrightarrow G - v is $f|_{V(G-v)}$ -paintable.

Pf. Given a Painter strategy **S** on G - v, postpone v when marked if **S** says to color a neighbor of v. This happens at most $d_G(v)$ times.

Prop. (Degeneracy Tool) If $f(v) > d_G(v)$, then *G* is *f*-paintable \Leftrightarrow G - v is $f|_{V(G-v)}$ -paintable.

Pf. Given a Painter strategy **S** on G - v, postpone v when marked if **S** says to color a neighbor of v. This happens at most $d_G(v)$ times.

Def. The join of G and H, denoted $G \oplus H$, is the disjoint union G + H plus edges joining all of V(G) to all of V(H).

Prop. (Degeneracy Tool) If $f(v) > d_G(v)$, then *G* is *f*-paintable \Leftrightarrow G - v is $f|_{V(G-v)}$ -paintable.

Pf. Given a Painter strategy **S** on G - v, postpone v when marked if **S** says to color a neighbor of v. This happens at most $d_G(v)$ times.

Def. The join of G and H, denoted $G \oplus H$, is the disjoint union G + H plus edges joining all of V(G) to all of V(H).

Thm. (CLMPTW) If G is k-paintable and $|V(G)| \le \frac{t}{t-1}k$, then $G \oplus \overline{K}_t$ is (k+1)-paintable.

Prop. (Degeneracy Tool) If $f(v) > d_G(v)$, then *G* is *f*-paintable \Leftrightarrow G - v is $f|_{V(G-v)}$ -paintable.

Pf. Given a Painter strategy **S** on G - v, postpone v when marked if **S** says to color a neighbor of v. This happens at most $d_G(v)$ times.

Def. The join of G and H, denoted $G \oplus H$, is the disjoint union G + H plus edges joining all of V(G) to all of V(H).

Thm. (CLMPTW) If G is k-paintable and $|V(G)| \le \frac{t}{t-1}k$, then $G \oplus \overline{K}_t$ is (k+1)-paintable.

Pf. Idea: Painter uses a k-paintability strategy **S** on G, ignoring the added t-set T, until a special round where $M \cap T$ is colored instead. Each $v \in T$ has a token left, and G can be finished with the extra tokens in V(G).

Def. G is chromatic-choosable if $\chi_{\ell}(G) = \chi(G)$. G is chromatic-paintable if $\chi_{p}(G) = \chi(G)$.

Def. *G* is chromatic-choosable if $\chi_{\ell}(G) = \chi(G)$. *G* is chromatic-paintable if $\chi_{\rho}(G) = \chi(G)$.

Conj. (Ohba [2002]) If $|V(G)| \le 2\chi(G) + 1$, then G is chromatic-choosable. (Sharpness: $K_{4,2,2,...,2}$)

Def. G is chromatic-choosable if $\chi_{\ell}(G) = \chi(G)$. G is chromatic-paintable if $\chi_{\rho}(G) = \chi(G)$.

Conj. (Ohba [2002]) If $|V(G)| \le 2\chi(G) + 1$, then G is chromatic-choosable. (Sharpness: $K_{4,2,2,...,2}$)

• Recently proved by Reed, Noel, and Wu!

Def. G is chromatic-choosable if $\chi_{\ell}(G) = \chi(G)$. G is chromatic-paintable if $\chi_{\rho}(G) = \chi(G)$.

Conj. (Ohba [2002]) If $|V(G)| \le 2\chi(G) + 1$, then G is chromatic-choosable. (Sharpness: $K_{4,2,2,...,2}$)

• Recently proved by Reed, Noel, and Wu!

Conj. (Huang–Wong–Zhu [2011]) If $|V(G)| \le 2\chi(G)$, then G is chromatic-paintable. (Sharpness: $K_{3,2,2,...,2}$)

Def. G is chromatic-choosable if $\chi_{\ell}(G) = \chi(G)$. G is chromatic-paintable if $\chi_{\rho}(G) = \chi(G)$.

Conj. (Ohba [2002]) If $|V(G)| \le 2\chi(G) + 1$, then G is chromatic-choosable. (Sharpness: $K_{4,2,2,...,2}$)

• Recently proved by Reed, Noel, and Wu!

Conj. (Huang–Wong–Zhu [2011]) If $|V(G)| \le 2\chi(G)$, then G is chromatic-paintable. (Sharpness: $K_{3,2,2,...,2}$)

Thm. (Ohba [2002]) If $|V(G)| \le \chi(G) + \sqrt{2\chi(G)}$, then *G* is chromatic-choosable.

Def. G is chromatic-choosable if $\chi_{\ell}(G) = \chi(G)$. G is chromatic-paintable if $\chi_{\rho}(G) = \chi(G)$.

Conj. (Ohba [2002]) If $|V(G)| \le 2\chi(G) + 1$, then G is chromatic-choosable. (Sharpness: $K_{4,2,2,...,2}$)

• Recently proved by Reed, Noel, and Wu!

Conj. (Huang–Wong–Zhu [2011]) If $|V(G)| \le 2\chi(G)$, then G is chromatic-paintable. (Sharpness: $K_{3,2,2,...,2}$)

Thm. (Ohba [2002]) If $|V(G)| \le \chi(G) + \sqrt{2\chi(G)}$, then *G* is chromatic-choosable.

Thm. $\chi_{\rho}(G) \leq k$ and $|V(G)| \leq \frac{t}{t-1}k \Rightarrow \chi_{\rho}(G \oplus \overline{K}_t) \leq k+1$.

Cor. $K_{2,...,2}$ is chromatic-paintable.

Def. G is chromatic-choosable if $\chi_{\ell}(G) = \chi(G)$. G is chromatic-paintable if $\chi_{\rho}(G) = \chi(G)$.

Conj. (Ohba [2002]) If $|V(G)| \le 2\chi(G) + 1$, then G is chromatic-choosable. (Sharpness: $K_{4,2,2,...,2}$)

• Recently proved by Reed, Noel, and Wu!

Conj. (Huang–Wong–Zhu [2011]) If $|V(G)| \le 2\chi(G)$, then *G* is chromatic-paintable. (Sharpness: $K_{3,2,2,...,2}$)

Thm. (Ohba [2002]) If $|V(G)| \le \chi(G) + \sqrt{2\chi(G)}$, then *G* is chromatic-choosable.

Thm. $\chi_{\rho}(G) \leq k$ and $|V(G)| \leq \frac{t}{t-1}k \Rightarrow \chi_{\rho}(G \oplus \overline{K}_t) \leq k+1.$

Cor. $K_{2,...,2}$ is chromatic-paintable. **Sharpness:** $\chi_p(K_{3,2}) = 2$, but $\chi_p(K_{3,2,2}) = 4$ ([KKLZ]).

Def. G is chromatic-choosable if $\chi_{\ell}(G) = \chi(G)$. G is chromatic-paintable if $\chi_{\rho}(G) = \chi(G)$.

Conj. (Ohba [2002]) If $|V(G)| \le 2\chi(G) + 1$, then G is chromatic-choosable. (Sharpness: $K_{4,2,2,...,2}$)

Recently proved by Reed, Noel, and Wu!

Conj. (Huang–Wong–Zhu [2011]) If $|V(G)| \le 2\chi(G)$, then *G* is chromatic-paintable. (Sharpness: $K_{3,2,2,...,2}$)

Thm. (Ohba [2002]) If $|V(G)| \le \chi(G) + \sqrt{2\chi(G)}$, then *G* is chromatic-choosable.

Thm. $\chi_{\rho}(G) \leq k$ and $|V(G)| \leq \frac{t}{t-1}k \Rightarrow \chi_{\rho}(G \oplus \overline{K}_t) \leq k+1.$

Cor. $K_{2,...,2}$ is chromatic-paintable. **Sharpness:** $\chi_p(K_{3,2}) = 2$, but $\chi_p(K_{3,2,2}) = 4$ ([KKLZ]). **Cor.** $|V(G)| \le \chi(G) + 2\sqrt{\chi(G)-1} \Rightarrow$ chrom-paintable.

Complete Bipartite Graphs Thm. (Vizing [1976]) $K_{k,r}$ is k-choosable $\Leftrightarrow r < k^k$.

Complete Bipartite Graphs

Thm. (Vizing [1976]) $K_{k,r}$ is *k*-choosable $\Leftrightarrow r < k^k$.

Thm. (CLMPTW) Consider $K_{k,r}$ with parts X of size k and Y of size r. If each vertex of Y has k tokens, then

Painter has a winning strategy $\Leftrightarrow r < \prod_{i=1}^{k} t_i$,

where t_1, \ldots, t_k are the token counts in X.

Complete Bipartite Graphs

Thm. (Vizing [1976]) $K_{k,r}$ is *k*-choosable $\Leftrightarrow r < k^k$.

Thm. (CLMPTW) Consider $K_{k,r}$ with parts X of size k and Y of size r. If each vertex of Y has k tokens, then

Painter has a winning strategy $\Leftrightarrow r < \prod_{i=1}^{k} t_i$,

where t_1, \ldots, t_k are the token counts in X.

Cor. $K_{k,r}$ is *k*-paintable $\Leftrightarrow r < k^k$.

k-paintability for K_{k,r}

Thm. (CLMPTW) Consider $K_{k,r}$ with |X| = k and |Y| = r. If f(y) = k for $y \in Y$ and $f(x_i) = t_i$ for $x_i \in X$, then

Painter has a winning strategy $\Leftrightarrow r < \prod_{i=1}^{k} t_i$.

k-paintability for K_{k,r}

Thm. (CLMPTW) Consider $K_{k,r}$ with |X| = k and |Y| = r. If f(y) = k for $y \in Y$ and $f(x_i) = t_i$ for $x_i \in X$, then

Painter has a winning strategy $\Leftrightarrow r < \prod_{i=1}^{k} t_i$.

Pf. $r = \prod t_i \Rightarrow K_{k,r}$ is not *f*-choosable. Let $L(\mathbf{x}_i) = U_i$ with $|U_i| = t_i$ and pairwise disjoint. Let $\{L(\mathbf{y}): \mathbf{y} \in Y\} = U_1 \times \cdots \times U_k$.

k-paintability for K_{k,r}

Thm. (CLMPTW) Consider $K_{k,r}$ with |X| = k and |Y| = r. If f(y) = k for $y \in Y$ and $f(x_i) = t_i$ for $x_i \in X$, then

Painter has a winning strategy $\Leftrightarrow r < \prod_{i=1}^{k} t_i$.

Pf. $r = \prod t_i \Rightarrow K_{k,r}$ is not *f*-choosable. Let $L(x_i) = U_i$ with $|U_i| = t_i$ and pairwise disjoint. Let $\{L(y): y \in Y\} = U_1 \times \cdots \times U_k$. Any coloring of X blocks all colors of some $y \in Y$.

Thm. (CLMPTW) Consider $K_{k,r}$ with |X| = k and |Y| = r. If f(y) = k for $y \in Y$ and $f(x_i) = t_i$ for $x_i \in X$, then

Painter has a winning strategy $\Leftrightarrow r < \prod_{i=1}^{k} t_i$.

Pf. $r = \prod t_i \Rightarrow K_{k,r}$ is not f-choosable. Let $L(x_i) = U_i$ with $|U_i| = t_i$ and pairwise disjoint. Let $\{L(y): y \in Y\} = U_1 \times \cdots \times U_k$. Any coloring of X blocks all colors of some $y \in Y$.

 $r < \prod t_i \Rightarrow$ Painter wins.

Thm. (CLMPTW) Consider $K_{k,r}$ with |X| = k and |Y| = r. If f(y) = k for $y \in Y$ and $f(x_i) = t_i$ for $x_i \in X$, then

Painter has a winning strategy $\Leftrightarrow r < \prod_{i=1}^{k} t_i$.

Pf. $r = \prod t_i \Rightarrow K_{k,r}$ is not *f*-choosable. Let $L(x_i) = U_i$ with $|U_i| = t_i$ and pairwise disjoint. Let $\{L(y): y \in Y\} = U_1 \times \cdots \times U_k$. Any coloring of *X* blocks all colors of some $y \in Y$.

 $r < \prod t_i \Rightarrow$ Painter wins. $\sum t_i = k \Rightarrow r = 0 \Rightarrow win \checkmark$.

Thm. (CLMPTW) Consider $K_{k,r}$ with |X| = k and |Y| = r. If f(y) = k for $y \in Y$ and $f(x_i) = t_i$ for $x_i \in X$, then

Painter has a winning strategy $\Leftrightarrow r < \prod_{i=1}^{k} t_i$.

Pf. $r = \prod t_i \Rightarrow K_{k,r}$ is not *f*-choosable. Let $L(x_i) = U_i$ with $|U_i| = t_i$ and pairwise disjoint. Let $\{L(y): y \in Y\} = U_1 \times \cdots \times U_k$. Any coloring of *X* blocks all colors of some $y \in Y$.

 $r < \prod t_i \Rightarrow$ *Painter wins.* $\sum t_i = k \Rightarrow r = 0 \Rightarrow \text{win } \checkmark$. $\sum t_i > k$: may assume $|M \cap X| = 1$ (by degeneracy tool).

Thm. (CLMPTW) Consider $K_{k,r}$ with |X| = k and |Y| = r. If f(y) = k for $y \in Y$ and $f(x_i) = t_i$ for $x_i \in X$, then

Painter has a winning strategy $\Leftrightarrow r < \prod_{i=1}^{k} t_i$.

Pf. $r = \prod t_i \Rightarrow K_{k,r}$ is not *f*-choosable. Let $L(x_i) = U_i$ with $|U_i| = t_i$ and pairwise disjoint. Let $\{L(y): y \in Y\} = U_1 \times \cdots \times U_k$. Any coloring of *X* blocks all colors of some $y \in Y$.

 $r < \prod t_i \Rightarrow$ *Painter wins.* $\sum t_i = k \Rightarrow r = 0 \Rightarrow \text{win } \checkmark$. $\sum t_i > k$: may assume $|M \cap X| = 1$ (by degeneracy tool). Let $M \cap X = \{x_k\}$ and $q = |M \cap Y|$.

Thm. (CLMPTW) Consider $K_{k,r}$ with |X| = k and |Y| = r. If f(y) = k for $y \in Y$ and $f(x_i) = t_i$ for $x_i \in X$, then

Painter has a winning strategy $\Leftrightarrow r < \prod_{i=1}^{k} t_i$.

Pf. $r = \prod t_i \Rightarrow K_{k,r}$ is not *f*-choosable. Let $L(x_i) = U_i$ with $|U_i| = t_i$ and pairwise disjoint. Let $\{L(y): y \in Y\} = U_1 \times \cdots \times U_k$. Any coloring of *X* blocks all colors of some $y \in Y$.

 $r < \prod t_i \Rightarrow$ *Painter wins.* $\sum t_i = k \Rightarrow r = 0 \Rightarrow \text{win } \checkmark$. $\sum t_i > k$: may assume $|M \cap X| = 1$ (by degeneracy tool). Let $M \cap X = \{x_k\}$ and $q = |M \cap Y|$.

Case 1: $q < \prod_{i=1}^{k-1} t_i$. Painter colors x_k . Y - M is degenerate; apply ind. hyp. to $(X - x_k) \cup (M \cap Y)$.

Thm. (CLMPTW) Consider $K_{k,r}$ with |X| = k and |Y| = r. If f(y) = k for $y \in Y$ and $f(x_i) = t_i$ for $x_i \in X$, then

Painter has a winning strategy $\Leftrightarrow r < \prod_{i=1}^{k} t_i$.

Pf. $r = \prod t_i \Rightarrow K_{k,r}$ is not *f*-choosable. Let $L(x_i) = U_i$ with $|U_i| = t_i$ and pairwise disjoint. Let $\{L(y): y \in Y\} = U_1 \times \cdots \times U_k$. Any coloring of *X* blocks all colors of some $y \in Y$.

 $r < \prod t_i \Rightarrow$ *Painter wins.* $\sum t_i = k \Rightarrow r = 0 \Rightarrow \text{win } \checkmark$. $\sum t_i > k$: may assume $|M \cap X| = 1$ (by degeneracy tool). Let $M \cap X = \{x_k\}$ and $q = |M \cap Y|$.

Case 1: $q < \prod_{i=1}^{k-1} t_i$. Painter colors x_k . Y - M is degenerate; apply ind. hyp. to $(X - x_k) \cup (M \cap Y)$. **Case 2:** $q \ge \prod_{i=1}^{k-1} t_i$. Painter colors $M \cap Y$. $|Y - M| < \prod t_i - q \le \prod_{i=1}^{k-1} t_i(t_k - 1)$; ind. hyp. applies!

Open Question Ques. Can $\chi_p(G) - \chi_\ell(G) > 1$?

Ques. Can $\chi_{\rho}(G) - \chi_{\ell}(G) > 1$?

Graphs to consider:

Possibility 1: Complete bipartite graphs $\chi_{\ell}(K_{k,k}) \leq \lg k - (\frac{1}{2} + o(1)) \lg \lg k$ (Alon) $\chi_{\rho}(K_{k,k}) \leq \lg k$ (KKLZ [2012])

Ques. Can $\chi_{\rho}(G) - \chi_{\ell}(G) > 1$?

Graphs to consider:

Possibility 1: Complete bipartite graphs $\chi_{\ell}(K_{k,k}) \leq \lg k - (\frac{1}{2} + o(1)) \lg \lg k$ (Alon) $\chi_{\rho}(K_{k,k}) \leq \lg k$ (KKLZ [2012])

Possibility 2: Complete multipartite graphs $\chi_{\ell}(K_{3*k}) = \begin{bmatrix} \frac{4k-1}{3} \end{bmatrix}$ (Kierstead [2000]) $\chi_{\rho}(K_{3*k}) \leq \frac{3}{2}k$ (KMZ [2013+])

Ques. Can $\chi_{\rho}(G) - \chi_{\ell}(G) > 1$?

Graphs to consider:

Possibility 1: Complete bipartite graphs $\chi_{\ell}(K_{k,k}) \leq \lg k - (\frac{1}{2} + o(1)) \lg \lg k$ (Alon) $\chi_{\rho}(K_{k,k}) \leq \lg k$ (KKLZ [2012])

Possibility 2: Complete multipartite graphs $\chi_{\ell}(K_{3*k}) = \left\lceil \frac{4k-1}{3} \right\rceil$ (Kierstead [2000]) $\chi_{\rho}(K_{3*k}) \leq \frac{3}{2}k$ (KMZ [2013+])

Ques. What is min {r: $K_{k+j,r}$ is not k-paintable}?

Ques. Can $\chi_{\rho}(G) - \chi_{\ell}(G) > 1$?

Graphs to consider:

Possibility 1: Complete bipartite graphs $\chi_{\ell}(K_{k,k}) \leq \lg k - (\frac{1}{2} + o(1)) \lg \lg k$ (Alon) $\chi_{\rho}(K_{k,k}) \leq \lg k$ (KKLZ [2012])

Possibility 2: Complete multipartite graphs $\chi_{l}(K_{3*k}) = \left\lceil \frac{4k-1}{3} \right\rceil$ (Kierstead [2000]) $\chi_{p}(K_{3*k}) \leq \frac{3}{2}k$ (KMZ [2013+])

Ques. What is min{ $r: K_{k+j,r}$ is not k-paintable}? Hard to compute for j > 0!

Ques. Can $\chi_{\rho}(G) - \chi_{\ell}(G) > 1$?

Graphs to consider:

Possibility 1: Complete bipartite graphs $\chi_{\ell}(K_{k,k}) \leq \lg k - (\frac{1}{2} + o(1)) \lg \lg k$ (Alon) $\chi_{\rho}(K_{k,k}) \leq \lg k$ (KKLZ [2012])

Possibility 2: Complete multipartite graphs $\chi_{l}(K_{3*k}) = \left\lceil \frac{4k-1}{3} \right\rceil$ (Kierstead [2000]) $\chi_{p}(K_{3*k}) \leq \frac{3}{2}k$ (KMZ [2013+])

Ques. What is min{ $r: K_{k+j,r}$ is not k-paintable}? Hard to compute for j > 0!

Thank You!