

Locating a Robber on a Tree.

Axel Brandt, Jennifer Diemunsch, Catherine Erbes, Jordan LeGrand, Casey Moffatt. University of Colorado Denver MAY 24, 2013 Pursuit-Evasion on a graph introduced by Parsons (1976).

Cops and Robbers introduced independently by Nowakowski and Winkler (1983) and by Quillot (1977).

Pursuit-Evasion on a graph introduced by Parsons (1976).

Cops and Robbers introduced independently by Nowakowski and Winkler (1983) and by Quillot (1977).

- Cop chooses vertex
- 2 Robber chooses vertex
- 3 Cop and Robber take turns moving to adjacent vertices (visible to both players)
- Op wins if he 'arrests' the Robber

Definition

A graph is **cop-win** if there is a strategy under which the Cop arrests the Robber in a finite number of moves. Otherwise, a graph is **robber-win**.

Definition

A graph is **cop-win** if there is a strategy under which the Cop arrests the Robber in a finite number of moves. Otherwise, a graph is **robber-win**.

Example

A tree T is cop-win.

Definition

A graph is **cop-win** if there is a strategy under which the Cop arrests the Robber in a finite number of moves. Otherwise, a graph is **robber-win**.

Example

A tree T is cop-win.

- 1 Which graphs are cop-win?
- 2 For a graph *G*, what is the minimum number of Cops required to capture the Robber?
- ③ What is the minimum guaranteed capture time?

Theorem (Nowakowski, Winkler 1983)

A finite graph G is cop-win if and only if G is dismantlable.

Theorem (Nowakowski, Winkler 1983)

A finite graph G is cop-win if and only if G is dismantlable.

Theorem (Aigner, Fromme 1984)

If G is planar with 3 Cops, then G is cop-win.

Theorem (Quilliot 1985)

If G is genus k with 3 + 2k Cops, then G is cop-win.

Theorem (Nowakowski, Winkler 1983)

A finite graph G is cop-win if and only if G is dismantlable.

Theorem (Aigner, Fromme 1984)

If G is planar with 3 Cops, then G is cop-win.

Theorem (Quilliot 1985)

If G is genus k with 3 + 2k Cops, then G is cop-win.

Theorem (Seymour, Thomas 1993)

A graph G has treewidth k - 1 iff k is the minimum number of cops for which G is cop-win.

- Directed graphs (Hahn, MacGillivray 2006)
- Edge Critical graphs (Clarke, Fitzpatrick, Nowakowski 2010)
- Forbidden (induced) subgraphs (Joret, Kamiński, Theis 2010)
- Interval graphs (Gavenčiak 2011)
- Geometric graphs (Beveridge, Dudek, Frieze, Müller 2012)
- Random graphs (Scott, Sudakov 2011; Bollobas, Kun, Leader 2013)

• Robber can Hide and Ride (Chalopin, Chepoi 2011)

• Lazy Robber (Richerby, Thilikos 2011)

• Fast Robber (Alon, Mehrabian 2011; Frieze, Krivelevich, Loh 2012)

• Drunk Robber (Kehagias, Prałat 2012)

- Helicopter Search (Fomin 1998)
- Tandem Search (Clarke, Nowakowski 2005)
- Reduced Visibility (Isler, Karnad 2008)
- Witness (Clarke 2009)
- Fuel, Cost, Time (Fomin, Golovach, Prałat 2012)
- Distance Query (Seager 2012)

- Helicopter Search (Fomin 1998)
- Tandem Search (Clarke, Nowakowski 2005)
- Reduced Visibility (Isler, Karnad 2008)
- Witness (Clarke 2009)
- Fuel, Cost, Time (Fomin, Golovach, Prałat 2012)
- Distance Query (Seager 2012)

Distance Query

1 Robber chooses location

- Robber chooses location
- 2 Cop 'probes' a vertex and discovers the distance from that vertex to Robber

- Robber chooses location
- 2 Cop 'probes' a vertex and discovers the distance from that vertex to Robber
- 3 Robber may move to any adjacent vertex not the probe vertex (no-backtrack condition)

- Robber chooses location
- 2 Cop 'probes' a vertex and discovers the distance from that vertex to Robber
- 3 Robber may move to any adjacent vertex not the probe vertex (no-backtrack condition)
- 4 Cop wins if he determines unique location of Robber

- Robber chooses location
- 2 Cop 'probes' a vertex and discovers the distance from that vertex to Robber
- 3 Robber may move to any adjacent vertex not the probe vertex (no-backtrack condition)
- 4 Cop wins if he determines unique location of Robber

- Robber chooses location
- 2 Cop 'probes' a vertex and discovers the distance from that vertex to Robber
- 3 Robber may move to any adjacent vertex not the probe vertex (no-backtrack condition)
- 4 Cop wins if he determines unique location of Robber

Definition

A graph G is locatable if the Cop has a winning strategy.

For locatable G, the location number of G, loc(G), is the minimum number of probes guaranteed to locate the Robber.
Location Number of Paths

Proposition (Seager 2012)

Location Number of Paths

Proposition (Seager 2012)

Location Number of Paths

Proposition (Seager 2012)

loc(G) = 1 if and only if G is a path.

Proposition (Seager 2012)

 $loc(K_3) = 2$ and $loc(K_{2,3}) = 3$.

loc(G) = 1 if and only if G is a path.

Proposition (Seager 2012)

 $loc(K_3) = 2$ and $loc(K_{2,3}) = 3$.

Proposition

If G contains K_4 as a subgraph, then G is not locatable.

loc(G) = 1 if and only if G is a path.

Proposition (Seager 2012)

 $loc(K_3) = 2$ and $loc(K_{2,3}) = 3$.

Proposition

If G contains K_4 as a subgraph, then G is not locatable.

Proposition

If G contains $K_{3,3}$ as an induced subgraph, then G is not locatable.

Proposition $loc(C_4) = 2$

Proposition

 $loc(C_4) = 2$

Proposition

 C_5 is not locatable.

Proposition

 $loc(C_4) = 2$

Proposition

C₅ is not locatable.

Proposition

 C_n is locatable for n > 5. With, $loc(C_n) = 3$ for $6 \le n \le 11$ and $loc(C_n) = 2$ for n > 11.

Seager's Results For Trees

Theorem

For any tree T, $loc(T) \ge \Delta(T) - 1$.

Theorem

For any tree T,
$$loc(T) \ge \Delta(T) - 1$$
.

Theorem

If T is an n-vertex spider with $n \ge 3$, then $loc(T) = \Delta(T) - 1$.

Theorem

For any tree T,
$$loc(T) \ge \Delta(T) - 1$$
.

Theorem

If T is an n-vertex spider with $n \ge 3$, then $loc(T) = \Delta(T) - 1$.

Corollary

$$loc(K_{1,n-1}) = n - 2$$
 for $n \ge 3$.

Theorem

For any tree T,
$$loc(T) \ge \Delta(T) - 1$$
.

Theorem

If T is an n-vertex spider with $n \ge 3$, then $loc(T) = \Delta(T) - 1$.

Corollary

$$loc(K_{1,n-1}) = n - 2$$
 for $n \ge 3$.

Theorem

If T is a tree with $n \ge 3$ vertices, then $loc(T) \le n-2$, with equality if and only if $T = K_{1,n-1}$.

Definition

An *r*-locating strategy locates the robber if he is ever at $r \in V(T)$. We say an *r*-locating strategy *S* has the Root Location Property for *r*.

Definition

An *r*-locating strategy locates the robber if he is ever at $r \in V(T)$. We say an *r*-locating strategy *S* has the Root Location Property for *r*.

Definition

An *r*-locating strategy locates the robber if he is ever at $r \in V(T)$. We say an *r*-locating strategy *S* has the Root Location Property for *r*.

Remark

Under an r-locating strategy, the Robber will never be able to move from one component of T - r to another.

Brandt, Diemunsch, Erbes, LeGrand, Moffatt | UCD

Theorem (Seager 2012)

If T is a tree with $n \ge 3$ vertices, then $loc(T) \le n-2$, with equality if and only if $T = K_{n-1,1}$.

Theorem (Seager 2012)

If T is a tree with $n \ge 3$ vertices, then $loc(T) \le n-2$, with equality if and only if $T = K_{n-1,1}$.

Open Problems

Find a strategy for trees that uses loc(T) probes

Theorem (Seager 2012)

If T is a tree with $n \ge 3$ vertices, then $loc(T) \le n-2$, with equality if and only if $T = K_{n-1,1}$.

Open Problems

- Find a strategy for trees that uses *loc*(*T*) probes
- Improve bound for loc(T) using parameters other than n

d=1 Edge \Rightarrow *loc*(*T*) = ℓ - 1

d=1 Edge
$$\Rightarrow$$
 loc(*T*) = $\ell - 1$

d=2 Star
$$\Rightarrow$$
 loc(*T*) = ℓ - 1

d=1 Edge
$$\Rightarrow$$
 loc(*T*) = $\ell - 1$

d=2 Star
$$\Rightarrow$$
 loc(*T*) = $\ell - 1$

d=3 Double-Star
$$\Rightarrow$$
 loc(*T*) < ℓ - 1.

d=1 Edge
$$\Rightarrow$$
 loc(*T*) = ℓ - 1

d=2 Star
$$\Rightarrow$$
 loc(*T*) = $\ell - 1$

d=3 Double-Star
$$\Rightarrow$$
 loc(*T*) < $\ell - 1$.

d=4 Star of stars
$$\Rightarrow loc(T) < \ell - 1$$
.

d=1 Edge
$$\Rightarrow$$
 loc(*T*) = $\ell - 1$

d=2 Star
$$\Rightarrow$$
 loc(*T*) = $\ell - 1$

d=3 Double-Star
$$\Rightarrow$$
 loc(*T*) < $\ell - 1$.

d=4 Star of stars
$$\Rightarrow loc(T) < \ell - 1$$
.

d=5 One arm is star of stars, each other arms is a star $\Rightarrow < \ell - 1$.

Theorem (Brandt, Diemunsch, Erbes, LeGrand, M. 2013+) If *T* is a tree with diam(*T*) = $d \ge 6$ and $\Delta(T) = \Delta$, then

$$loc(T) \leq (2\Delta^2 - 6\Delta + 4) \lceil \frac{d}{2} \rceil - 4\Delta^2 + 13\Delta - 9.$$

Theorem (Brandt, Diemunsch, Erbes, LeGrand, M. 2013+) If *T* is a tree with diam(*T*) = $d \ge 6$ and $\Delta(T) = \Delta$, then $loc(T) \le (2\Delta^2 - 6\Delta + 4) \lceil \frac{d}{2} \rceil - 4\Delta^2 + 13\Delta - 9.$

Answering Seager's Questions

• Algorithmic construction of a strategy.

Theorem (Brandt, Diemunsch, Erbes, LeGrand, M. 2013+) If *T* is a tree with diam(*T*) = $d \ge 6$ and $\Delta(T) = \Delta$, then $loc(T) \le (2\Delta^2 - 6\Delta + 4) \lceil \frac{d}{2} \rceil - 4\Delta^2 + 13\Delta - 9.$

Answering Seager's Questions

- Algorithmic construction of a strategy.
- For *diam*(*T*) ≥ 6, *f*(Δ, *d*) < *n* − 2.

Theorem (Brandt, Diemunsch, Erbes, LeGrand, M. 2013+) If *T* is a tree with diam(*T*) = $d \ge 6$ and $\Delta(T) = \Delta$, then $loc(T) \le (2\Delta^2 - 6\Delta + 4) \lceil \frac{d}{2} \rceil - 4\Delta^2 + 13\Delta - 9.$

Answering Seager's Questions

- Algorithmic construction of a strategy.
- For *diam*(*T*) ≥ 6, *f*(Δ, *d*) < *n* − 2.

• Pick a Root.

- Pick a Root.
- · Remove paths.

- Pick a Root.
- · Remove paths.

- Pick a Root.
- · Remove paths.

- Pick a Root.
- · Remove paths.

- Pick a Root.
- · Remove paths.

- Pick a Root.
- · Remove paths.

- Pick a Root.
- · Remove paths.

- Pick a Root.
- · Remove paths.

- Pick a Root.
- · Remove paths.
- Remove Long Arms.

Algorithm Phase 4:

Algorithm Phase 4:

Lemma

If $T \subseteq T'$ then $loc(T) \leq loc(T')$

Lemma

If
$$T \subseteq T'$$
 then $loc(T) \leq loc(T')$

• Let T' be the smallest Δ -inary tree such that $T \subseteq T'$.

Lemma

If $T \subseteq T'$ then $loc(T) \leq loc(T')$

• Let T' be the smallest Δ -inary tree such that $T \subseteq T'$.

• Determining loc(T') gives an upper bound on loc(T).

$$loc(T) \leq (2\Delta^2 - 6\Delta + 4) \lceil \frac{d}{2} \rceil - 4\Delta^2 + 17\Delta - 17$$

$$loc(T) \leq (2\Delta^2 - 6\Delta + 4) \lceil \frac{d}{2} \rceil - 4\Delta^2 + 13\Delta - 9$$

Compare with n - 2 **For** k**-inary Tree.**

$$f(\Delta, d) = (2\Delta^2 - 6\Delta + 4) \lceil \frac{d}{2} \rceil - 4\Delta^2 + 13\Delta - 9$$

• $f(\Delta, d) \leq d\Delta^2$

$$f(\Delta, d) = (2\Delta^2 - 6\Delta + 4) \lceil \frac{d}{2} \rceil - 4\Delta^2 + 13\Delta - 9$$

•
$$f(\Delta, d) \leq d\Delta^2$$

•
$$d\Delta^2 < \sum_{i=0}^{\frac{d}{2}-1} (\Delta) (\Delta - 1)^i - 1$$

$$f(\Delta, d) = (2\Delta^2 - 6\Delta + 4) \lceil \frac{d}{2} \rceil - 4\Delta^2 + 13\Delta - 9$$

•
$$f(\Delta, d) \leq d\Delta^2$$

•
$$d\Delta^2 < \sum_{i=0}^{\frac{d}{2}-1} (\Delta) (\Delta - 1)^i - 1$$

• So
$$f(\Delta, d) \ll n - 2$$
 for Δ -inary tree.

Compare with $\ell - 1...?$

Compare with $\ell - 1...?$

Phase 1: Each ping we delete one leaf.

Phase 2: Every two pings we delete at least two leaves.

Phase 2: Every two pings we delete at least two leaves.

Phase 3: Each leaf takes at most two pings (except first/last).

Phase 2: Every two pings we delete at least two leaves.

Phase 3: Each leaf takes at most two pings (except first/last).

Phase 4: Half of the leaves take at most two pings.

Phase 2: Every two pings we delete at least two leaves.

Phase 3: Each leaf takes at most two pings (except first/last).

Phase 4: Half of the leaves take at most two pings.

$$\Rightarrow$$
 loc(*T*) < 2 ℓ .

Question

Lower Bound as a Function of *l*?

Question

Lower Bound as a Function of ℓ ?

Question

Can we generalize this to larger classes?

Thank You

Thank You

Seager. Locating a robber on a graph. *Discrete Math.* 312 (2012), no. 22, 3265-3269.