WELL-COVERED QUADRANGULATIONS

Art Finbow and Bert Hartnell
St. Marys University

Michael D. Plummer
Vanderbilt University

Let $\alpha(G)$ denote the independence number of G;
i.e., the size of a largest independent set of vertices.

Independent set problems are hard!!!

And no wonder!

Theorem (Karp 1972): Determining $\alpha(G)$ is NPcomplete.

And the problem remains NP-complete, even if:

1. G is triangle-free
or
2. G is cubic planar
or
3. G is $K_{1,4}$ free.

OK! I'm happy to approximate $\alpha(G)$

(in polynomial time)!!!

HAH!!!!

you CANNOT approximate closer than

$$
1.36 \alpha(G)
$$

(in polynomial time)

Unless

$$
P=N P
$$

So when is finding $\alpha(G)$ easy ???

It is trivially easy (i.e.,polynomial) to find $\alpha(G)$ if every maximAL independent set is maximUM.

Just start with any vertex and build your independent set in a greedy manner!

Graphs with this property are called well-covered.

Examples: $C_{3}, C_{4}, C_{5}, C_{7}$
But NOT C_{6} !

Great!!!!!
.....but.....

When is a graph well-covered?

Can these graphs be recognized in polynomial time???

Well, given a non-well-covered graph G, I hand you two maximal independent sets of differing cardinalities.

You can check their maximality in polynomial time.
So recognizing a non-well-covered graph is in co-NP.

Actually, the problem is known to be co-NP-complete!
(Chvátal-Slater (1993); Sankaranarayana-Stewart (1992))

And it remains co-NP-complete, even for

circulant graphs

(Brown and Hoshino, 2011)

But the complexity of the recognition problem for graphs that are well-covered remains

UNKNOWN!!!

Finbow, Hartnell and Nowakowski (1993) characterized well-covered graphs having

$$
\text { girth at least } 5
$$

and their characterization leads to a
polynomial recognition algorithm

So it remains to focus on

girth 3 and 4

PROBLEM (2011):

Characterize well-covered planar quadrangulations

Lemma: A planar quadrangulation

(a) contains no triangles
and
(b) is bipartite.

Part (b) follows from part (a) and induction.

Ravindra's Theorem: A bipartite well-covered graph G contains a perfect matching and for every perfect matching M in G and for every edge e in $M, G[N(x) \cup N(y)]$ is a complete bipartite graph.

So in particular, a bipartite well-covered graph must be balanced.

Let us denote by WCQ, the set of all well-covered quadrangulations of the plane.

Theorem: Suppose $G \in W C Q, M$ is a perfect matching in G and $e=x y$ is an edge in M. Then either $G=C_{4}$ or else exactly one of x and y has degree 2 in G.
(Hence, if $G \neq C_{4}$, half the vertices of G have degree 2 and the rest have degree at least 3.)

Now define a second set of quadrangulations of the plane, denoted by $W C Q^{\prime}$, as follows:

Def.: A quadrangulation Q^{\prime} belongs to $W C Q^{\prime}$ if there is a set of vertex-disjoint 4 -cycles, $C_{1}, C_{2}, \ldots, C_{k}$ in the plane

> (we call these basic 4-cycles)
such that $V\left(Q^{\prime}\right)=V\left(C_{1}\right) \cup \cdots \cup V\left(C_{k}\right)$ and each pair of basic 4 -cycles are joined according to the following recipe:

Either the pair are joined by no edges

or

they are joined precisely as shown in Figure 1 below:
$\mathrm{O}=$ degree 2 vertex

Figure 1

Here are some examples of graphs belonging to $W C Q^{\prime}$:

$\alpha(\mathrm{G})=4$

$|\mathrm{V}(\mathrm{G})|=8$

Main Theorem: $W C Q=W C Q^{\prime}$.

Proof: $W C Q \subseteq W C Q^{\prime}$: Argument uses Ravindra's Theorem repeatedly.
$W C Q^{\prime} \subseteq W C Q:$ If $G=C_{4}$, this is clear.
If $G \neq C_{4}$, we argue that any maximum independent set I in G must contain precisely two vertices from each basic 4-cycle.

Recognition of graphs in $W C Q$ is clearly polynomial.

1. Find a perfect matching M.
(If none exists, $G \notin W C Q$.)
2. By Ravindra's theorem, if $G \neq C_{4}$, each edge of M must have a vertex of degree 2 in G.

Use M and Ravindra's theorem via the method used in the Main Theorem to build a set of basic 4-cycles.

Note that, if $G \neq C_{4}$, each basic 4-cycle contains exactly two vertices of degree 2. If the process fails, G is not well-covered.
3. Now test every pair of basic 4-cycles to see that either they are joined by no edge or they are joined precisely as in Figure 1 above.
4. If each pair are so joined, G is in $W C Q$.

If there is a pair that are not so joined, G is not in $W C Q$.

PROBLEM (1988):

Characterize well-covered planar triangulations

This has proved much harder than quadrangulations!!!

A ROADMAP:

1. 5-connected:

There are none!
(Finbow, Hartnell, Nowakowski +MDP 2004)
2. 4-connected:

There are precisely 4 !

This was done in two steps:
(a) If a 4-connected well-covered triangulation contains two adjacent vertices of degree 4 , then there are precisely four such graphs.
(FHNP 2009)

(b) Every 4-connected well-covered triangulation must contain two adjacent vertices of degree 4.
(FHNP 2010)
3. What about 3-connected triangulations??????

Here is an infinite family:

The family of such graphs is called the K_{4}-family and is denoted by \mathcal{K}.

BUT.....these are NOT ALL!!!

Flash!!!

The family is now characterized and is polynomially recognizable (FHNP 2012).

The paper is some 40 pages long (!), so we will give just an outline:

Lemma: If G is well-covered and v is a vertex in G, then $G-N[v]$ is well-covered.

Applying this lemma repeatedly, it is easy to see that
Lemma: If G is well-covered and $I=\left\{v_{1}, \ldots, v_{k}\right\}$ is an independent set in G, then $G-N[I]=G-\left(\cup_{i=1}^{k} N\left[v_{i}\right]\right)$ is also well-covered.

We often use the preceding lemma to show that a certain graph is not well-covered, by strategically finding an independent I in G such that $G-N[I]$ is not well-covered and therefore the parent graph is not wellcovered.

BUT it can be very difficult to find just the right independent set I here!

Next we need a new concept called O-join.

Suppose that G_{1} and G_{2} are both 3-connected planar triangulations and that G_{1} contains a triangular face $a b c a$ and G_{2}, a triangular face $a^{\prime} b^{\prime} c^{\prime} a^{\prime}$. Embed G_{1} so that $a b c a$ is an interior face and embed G_{2}^{\prime} so that $a^{\prime} b^{\prime} c^{\prime} a^{\prime}$ bounds the infinite face.

Let $G_{1} \bigcirc G_{2}$ denote the graph obtained by embedding

G_{2} into the interior of face $a b c a$ of G_{1} and adding the six edges shown in the following figure.

b

Then $G_{1} \bigcirc G_{2}$ is called an O-join of G_{1} and G_{2} at the faces $a b c a$ and $a^{\prime} b^{\prime} c^{\prime} a^{\prime}$.
(The "O" in "O-join" stands for "octahedral".)
(Note that given two triangles labeled as above, there are six possible O-joins at these triangles.)

Theorem: If G_{1} and G_{2} are each 3-connected planar well-covered triangulations, then any O-join $G_{1} \bigcirc G_{2}$ is also a 3-connected planar well-covered triangulation.

The converse of this theorem is

MUCH MORE DIFFICULT!!

In fact, most of this long paper is devoted to showing

that:
if G is a 3-connected planar well-covered triangulation and G is not one of ten exceptional graphs, then G must
be constructed from smaller members of the family via a succession of O-joins.

Def.: Let G be a well-covered triangulation and $a b c a$, a face of G. Then $a b c a$ is called a YES-face if $G-a-$ $b, G-a-c$ and $G-b-c$ is also well-covered.

A triangular face which is not a YES-face is called a NO-face.

Lemma: Suppose G_{1} and G_{2} are planar triangulations
O-joined at triangles T_{1} and T_{2}, respectively, to yield $G=G_{1} \bigcirc G_{2}$.

Then G is well-covered if and only if
(1) G_{1} and G_{2} are both well-covered, and
(2) T_{i} bounds a YES-face in G_{i}, for $i=1$ and 2 .

Also, if G is well-covered, then $\alpha(G)=\alpha\left(G_{1}\right)+\alpha\left(G_{2}\right)$.

SOME EXAMPLES:

(1) Both faces of K_{3} are YES-faces and all faces of K_{4} are YES-faces.
(2) If a triangle K_{3} with vertices x, y and z is O-joined to a w.-c. graph G via its YES-face $a b c a$, to obtain a graph H, then the six faces generated in taking the Ojoin, together with the original K_{3} form a set of seven NO-faces.
(See the next figure:)

(3) In R_{6}, R_{7} and R_{12}, each triangular face is a NO-face.
(4) In R_{8}, the four faces labeled " Y " in the following figure are the only YES-faces.

R_{8}
(5) Informally, a YES-face is one at which one can O-join another w-c. triangulation and, in the process, obtain a new w-c. triangulation!

Next we consider:

> Well-covered triangulations having NO
> O-joins

Def.: A vertex in a graph G is white if $\operatorname{deg}_{G}(v)=3$ or v is adjacent to a vertex with degree 3 .
(NOTE: In a well-covered triangulation, no two different
K_{4} S can share a vertex!)

Def.: Let us call a non-white vertex blue.

At this point, we show that:
(1) If a w-c. triangulation G contains a white vertex, but no O-joins, then it belongs to \mathcal{K}; that is, all the vertices of G are white.
(2) If a w-c. triangulation G contains no white vertex and no O-joins, then

$$
G \in\left\{K_{3}, R_{7}, R_{8}, R_{12}\right\} .
$$

If G is a w-c. triangulation containing at least one white vertex, at least one blue vertex and has no O-joins, then we call G bad.

The bulk of the paper is then devoted to showing:

There is NO BAD triangulation.

This is done by considering a bad graph of minimum size.

To summarize:

Def.: The extended K_{4}-family, denoted \mathcal{K}^{+}, is:
(a) the collection of all graphs that can be obtained from a plane triangulation G, a member of the K_{4}-family \mathcal{K} having at least five vertices, by choosing two disjoint sets R and S (possibly empty) of YES-faces in G and O-joining a triangle to each face in R and O-joining a copy of R_{8} to each face of S via an appropriate YES-face of R_{8}, together with
(b) $K_{4}, K_{4} \bigcirc K_{3}$ and $K_{4} \bigcirc R_{8}$.

We can now state our characterization as follows:

Characterization Theorem: Let G be a planar triangulation. Then G is well-covered if and only if G belongs to the extended \mathcal{K}_{4}-family or else G is one of the following graphs:

$$
K_{3}, R_{6}, R_{7}, R_{8}, R_{12}, R_{8} \bigcirc K_{3} \text { or } R_{8} \bigcirc R_{8} .
$$

A well-covered planar triangulation is either one of
ten special graphs
or it must have come from two smaller well-covered triangulations via an O-join.

One then looks for new O-joins in the two smaller component graphs and continue until the component graphs are O-join-free.

Since there can be at most a polynomial number of O-joins in a planar triangulation, we have a polynomial algorithm for recognizing planar well-covered triangulations.

