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Let α(G) denote the independence number of G;

i.e., the size of a largest independent set of vertices.



Independent set problems are hard!!!



And no wonder!

Theorem (Karp 1972): Determining α(G) is NP-

complete.



And the problem remains NP-complete, even if:

1. G is triangle-free

or

2. G is cubic planar

or

3. G is K1,4-free.



OK! I’m happy to approximate α(G)

(in polynomial time)!!!



HAH!!!!



You CANNOT approximate closer than

1.36α(G)
(in polynomial time)



Unless

P = NP



So when is finding α(G) easy ???



It is trivially easy (i.e.,polynomial) to find α(G) if

every maximAL independent set is maximUM.

Just start with any vertex and build your independent

set in a greedy manner!



Graphs with this property are called well-covered.



Examples: C3, C4, C5, C7

But NOT C6!
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Great!!!!!



.....but.....

When is a graph well-covered?

Can these graphs be recognized in polynomial time???



Well, given a non-well-covered graph G, I hand you

two maximal independent sets of differing cardinalities.

You can check their maximality in polynomial time.

So recognizing a non-well-covered graph is in co-NP.



Actually, the problem is known to be co-NP-complete!

(Chvátal-Slater (1993); Sankaranarayana-Stewart (1992))



And it remains co-NP-complete, even for

circulant graphs

.

(Brown and Hoshino, 2011)



But the complexity of the recognition problem for

graphs that are well-covered remains

UNKNOWN!!!



Finbow, Hartnell and Nowakowski (1993) character-

ized well-covered graphs having

girth at least 5

and their characterization leads to a

polynomial recognition algorithm



So it remains to focus on

girth 3 and 4



PROBLEM (2011):

Characterize well-covered planar quadrangulations



Lemma: A planar quadrangulation

(a) contains no triangles

and

(b) is bipartite.

Part (b) follows from part (a) and induction.



Ravindra’s Theorem: A bipartite well-covered graph G

contains a perfect matching and for every perfect match-

ing M in G and for every edge e in M , G[N(x) ∪N(y)]

is a complete bipartite graph.



So in particular, a bipartite well-covered graph must be

balanced.



Let us denote by WCQ, the set of all well-covered

quadrangulations of the plane.



Theorem: Suppose G ∈ WCQ, M is a perfect matching

in G and e = xy is an edge in M . Then either G = C4

or else exactly one of x and y has degree 2 in G.

(Hence, if G 6= C4, half the vertices of G have degree 2

and the rest have degree at least 3.)



Now define a second set of quadrangulations of the

plane, denoted by WCQ′, as follows:



Def.: A quadrangulation Q′ belongs to WCQ′ if there

is a set of vertex-disjoint 4-cycles, C1, C2, . . . , Ck in the

plane

(we call these basic 4-cycles)

such that V (Q′) = V (C1) ∪ · · · ∪ V (Ck) and each pair

of basic 4-cycles are joined according to the following

recipe:



Either the pair are joined by no edges

or

they are joined precisely as shown in Figure 1 below:
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Here are some examples of graphs belonging toWCQ′:



|V(G)| = 8

(G) = 4α



|V(G)| = 12

(G) = 6α



|V(G)| = 12

(G) = 6α



|V(G)| = 20

(G) = 10α



Main Theorem: WCQ = WCQ′.



Proof: WCQ ⊆ WCQ′: Argument uses Ravindra’s

Theorem repeatedly.

WCQ′ ⊆ WCQ: If G = C4, this is clear.

If G 6= C4, we argue that any maximum independent

set I in G must contain precisely two vertices from each

basic 4-cycle.



Recognition of graphs in WCQ is clearly polynomial.

1. Find a perfect matching M .

(If none exists, G /∈ WCQ.)

2. By Ravindra’s theorem, if G 6= C4, each edge of M

must have a vertex of degree 2 in G.

Use M and Ravindra’s theorem via the method used

in the Main Theorem to build a set of basic 4-cycles.



Note that, if G 6= C4, each basic 4-cycle contains

exactly two vertices of degree 2. If the process fails, G

is not well-covered.



3. Now test every pair of basic 4-cycles to see that either

they are joined by no edge or they are joined precisely

as in Figure 1 above.

4. If each pair are so joined, G is in WCQ.

If there is a pair that are not so joined, G is not in WCQ.

— THE END —



PROBLEM (1988):

Characterize well-covered planar triangulations



This has proved much harder than quadrangulations!!!



A ROADMAP:



1. 5-connected:

There are none!

(Finbow, Hartnell, Nowakowski +MDP 2004)



2. 4-connected:

There are precisely 4 !

This was done in two steps:



(a) If a 4-connected well-covered triangulation contains

two adjacent vertices of degree 4, then there are precisely

four such graphs.

(FHNP 2009)
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(b) Every 4-connected well-covered triangulation must

contain two adjacent vertices of degree 4.

(FHNP 2010)



3. What about 3-connected triangulations??????



Here is an infinite family:
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The family of such graphs is called the K4-family and

is denoted by K.



BUT.....these are NOT ALL!!!



Flash!!!

The family is now characterized and is polynomially

recognizable (FHNP 2012).



The paper is some 40 pages long (!), so we will give

just an outline:



Lemma: If G is well-covered and v is a vertex in G, then

G−N [v] is well-covered.



Applying this lemma repeatedly, it is easy to see that

Lemma: If G is well-covered and I = {v1, . . . , vk} is an

independent set in G, then G−N [I] = G− (∪ki=1N [vi])

is also well-covered.



We often use the preceding lemma to show that a

certain graph is not well-covered, by strategically find-

ing an independent I in G such that G − N [I] is not

well-covered and therefore the parent graph is not well-

covered.



BUT it can be very difficult to find just the right

independent set I here!



Next we need a new concept called O-join.



Suppose that G1 and G2 are both 3-connected planar

triangulations and that G1 contains a triangular face

abca and G2, a triangular face a′b′c′a′. Embed G1 so

that abca is an interior face and embed G′2 so that a′b′c′a′

bounds the infinite face.



LetG1©G2 denote the graph obtained by embedding

G2 into the interior of face abca of G1 and adding the

six edges shown in the following figure.



2

a

b

a’ b’

c’

c
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Then G1 © G2 is called an O-join of G1 and G2 at

the faces abca and a′b′c′a′.

(The “O” in “O-join” stands for “octahedral”.)

(Note that given two triangles labeled as above, there

are six possible O-joins at these triangles.)



Theorem: If G1 and G2 are each 3-connected planar

well-covered triangulations, then any O-join G1©G2 is

also a 3-connected planar well-covered triangulation.



The converse of this theorem is

MUCH MORE DIFFICULT!!



In fact, most of this long paper is devoted to showing

that:

if G is a 3-connected planar well-covered triangulation

and G is not one of ten exceptional graphs, then G must

be constructed from smaller members of the family via

a succession of O-joins.



Def.: Let G be a well-covered triangulation and abca,

a face of G. Then abca is called a YES-face if G − a −

b,G− a− c and G− b− c is also well-covered.

A triangular face which is not a YES-face is called a

NO-face.



Lemma: Suppose G1 and G2 are planar triangulations

O-joined at triangles T1 and T2, respectively, to yield

G = G1©G2.

Then G is well-covered if and only if

(1) G1 and G2 are both well-covered, and

(2) Ti bounds a YES-face in Gi, for i = 1 and 2.

Also, if G is well-covered, then α(G) = α(G1) + α(G2).



SOME EXAMPLES:

(1) Both faces of K3 are YES-faces and all faces of K4

are YES-faces.



(2) If a triangle K3 with vertices x, y and z is O-joined

to a w.-c. graph G via its YES-face abca, to obtain a

graph H, then the six faces generated in taking the O-

join, together with the original K3 form a set of seven

NO-faces.

(See the next figure:)
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(3) In R6, R7 and R12, each triangular face is a NO-face.



(4) In R8, the four faces labeled “Y” in the following

figure are the only YES-faces.
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(5) Informally, a YES-face is one at which one can O-join

another w-c. triangulation and, in the process, obtain a

new w-c. triangulation!



Next we consider:

Well-covered triangulations having

NO

O-joins



Def.: A vertex in a graph G is white if degG(v) = 3 or

v is adjacent to a vertex with degree 3.

(NOTE: In a well-covered triangulation, no two different

K4s can share a vertex!)



Def.: Let us call a non-white vertex blue.



At this point, we show that:



(1) If a w-c. triangulation G contains a white vertex,

but no O-joins, then it belongs to K; that is, all the

vertices of G are white.

(2) If a w-c. triangulation G contains no white vertex

and no O-joins, then

G ∈ {K3, R7, R8, R12}.



If G is a w-c. triangulation containing at least one

white vertex, at least one blue vertex and has no O-joins,

then we call G bad.

The bulk of the paper is then devoted to showing:

There is NO BAD triangulation.



This is done by considering a bad graph of minimum size.



To summarize:



Def.: The extended K4-family, denoted K+, is:



(a) the collection of all graphs that can be obtained from

a plane triangulation G, a member of the K4-family K

having at least five vertices, by choosing two disjoint

sets R and S (possibly empty) of YES-faces in G and

O-joining a triangle to each face in R and O-joining a

copy of R8 to each face of S via an appropriate YES-face

of R8, together with

(b) K4, K4©K3 and K4©R8.



We can now state our characterization as follows:



Characterization Theorem: Let G be a planar tri-

angulation. Then G is well-covered if and only if G

belongs to the extended K4-family or else G is one of

the following graphs:

K3, R6, R7, R8, R12, R8©K3 or R8©R8.



A well-covered planar triangulation is either one of

ten special graphs

or it must have come from two smaller well-covered tri-

angulations via an O-join.

One then looks for new O-joins in the two smaller

component graphs and continue until the component

graphs are O-join-free.



Since there can be at most a polynomial number of

O-joins in a planar triangulation, we have a polynomial

algorithm for recognizing planar well-covered triangula-

tions.


