Disjoint chorded cycles of the same length

26th Cumberland Conference on CGC

May 24, 2013

Joint work with Guantao Chen, Ronald J. Gould, Kazuhide Hirohata, and Katsuhiro Ota

Outline

(1) Some History

Outline

(1) Some History
(2) Main Results

Outline

(1) Some History
(2) Main Results
(3) Sketch of the Proof

Some History Main Results Sketch of the Proof

Some History - Cycles

- Well-known fact: $\delta(G) \geq 2 \Rightarrow C$.

Some History Main Results Sketch of the Proof

Some History - Cycles

- Well-known fact: $\delta(G) \geq 2 \Rightarrow C$.
- Corrádi and Hajnal (1963): G with $|G| \geq 3 k$ and $\delta(G) \geq 2 k$ contains k vertex-disjoint cycles.

Some History - Cycles

- Well-known fact: $\delta(G) \geq 2 \Rightarrow C$.
- Corrádi and Hajnal (1963): G with $|G| \geq 3 k$ and $\delta(G) \geq 2 k$ contains k vertex-disjoint cycles.
- Conjecture (Häggkvist, 1982): G of sufficiently large order and $\delta(G) \geq 4$ contains 2 vertex-disjoint cycles of the same length.

Some History - Cycles

- Well-known fact: $\delta(G) \geq 2 \Rightarrow C$.
- Corrádi and Hajnal (1963): G with $|G| \geq 3 k$ and $\delta(G) \geq 2 k$ contains k vertex-disjoint cycles.
- Conjecture (Häggkvist, 1982): G of sufficiently large order and $\delta(G) \geq 4$ contains 2 vertex-disjoint cycles of the same length.
- Conjecture (Thomassen, 1983): G with $|G| \geq n_{k}$ and $\delta(G) \geq 2 k$ contains k vertex-disjoint cycles of the same length.

Some History - Cycles

- Well-known fact: $\delta(G) \geq 2 \Rightarrow C$.
- Corrádi and Hajnal (1963): G with $|G| \geq 3 k$ and $\delta(G) \geq 2 k$ contains k vertex-disjoint cycles.
- Conjecture (Häggkvist, 1982): G of sufficiently large order and $\delta(G) \geq 4$ contains 2 vertex-disjoint cycles of the same length.
- Conjecture (Thomassen, 1983): G with $|G| \geq n_{k}$ and $\delta(G) \geq 2 k$ contains k vertex-disjoint cycles of the same length.
- Egawa (1996): Confirmed Thomassen's conjecture for $k \geq 3$ and $n_{k}=17 k+o(k)$.

Some History - Cycles

- Well-known fact: $\delta(G) \geq 2 \Rightarrow C$.
- Corrádi and Hajnal (1963): G with $|G| \geq 3 k$ and $\delta(G) \geq 2 k$ contains k vertex-disjoint cycles.
- Conjecture (Häggkvist, 1982): G of sufficiently large order and $\delta(G) \geq 4$ contains 2 vertex-disjoint cycles of the same length.
- Conjecture (Thomassen, 1983): G with $|G| \geq n_{k}$ and $\delta(G) \geq 2 k$ contains k vertex-disjoint cycles of the same length.
- Egawa (1996): Confirmed Thomassen's conjecture for $k \geq 3$ and $n_{k}=17 k+o(k)$.
- Verstraëte (2003): Gave a proof for all k for Thomassen's conjecture but with a larger n_{k}.

History Cont. - Chorded Cycles

Figure: A cycle with two chords $x y$ and $u v$

History Cont. - Chorded Cycles

- Question (Pósa,1961): Find conditions implying a graph contains a chorded cycle.

History Cont. - Chorded Cycles

- Question (Pósa,1961): Find conditions implying a graph contains a chorded cycle.
- Considering a longest path: $\delta(G) \geq 3 \Rightarrow C+$ a chord.

History Cont. - Chorded Cycles

- Question (Pósa,1961): Find conditions implying a graph contains a chorded cycle.
- Considering a longest path: $\delta(G) \geq 3 \Rightarrow C+$ a chord.
- Finkel (2008): G with $|G| \geq 4 k$ and $\delta(G) \geq 3 k$ contains k vertex-disjoint chorded cycles. (A generalization to Corrádi and Hajnal's result.)

History Cont. - Chorded Cycles

- Question (Pósa,1961): Find conditions implying a graph contains a chorded cycle.
- Considering a longest path: $\delta(G) \geq 3 \Rightarrow C+$ a chord.
- Finkel (2008): G with $|G| \geq 4 k$ and $\delta(G) \geq 3 k$ contains k vertex-disjoint chorded cycles. (A generalization to Corrádi and Hajnal's result.)
- Recall: Verstraëte, G with $|G| \geq n_{k}$ and $\delta(G) \geq 2 k$ contains k vertex-disjoint cycles of the same length.

History Cont. - Chorded Cycles

- Question (Pósa,1961): Find conditions implying a graph contains a chorded cycle.
- Considering a longest path: $\delta(G) \geq 3 \Rightarrow C+$ a chord.
- Finkel (2008): G with $|G| \geq 4 k$ and $\delta(G) \geq 3 k$ contains k vertex-disjoint chorded cycles. (A generalization to Corrádi and Hajnal's result.)
- Recall: Verstraëte, G with $|G| \geq n_{k}$ and $\delta(G) \geq 2 k$ contains k vertex-disjoint cycles of the same length.
- Question: What about k vertex-disjoint chorded cycles of the same length?

Main Result 1

Theorem

Let k be a natural number. Then there exists a positive integer n_{k} such that if G is a graph of order at least n_{k} and minimum degree at least $3 k+8$, then G contains k vertex-disjoint chorded cycles of the same length.

Main Result 1

Theorem

Let k be a natural number. Then there exists a positive integer n_{k} such that if G is a graph of order at least n_{k} and minimum degree at least $3 k+8$, then G contains k vertex-disjoint chorded cycles of the same length.

Qusetion

Can we change the minimum degree condition to $3 k$? (Best possible, $K_{3 k-1, n-3 k+1}$.)

Main Result 2

Theorem

Let G be a graph of order n and minimum degree at least 5 . Then G contains a chorded cycle of length at most $300 \log _{2} n$.

Main Result 2

Theorem

Let G be a graph of order n and minimum degree at least 5 . Then G contains a chorded cycle of length at most $300 \log _{2} n$.

Remarks: (i) Average degree 8 ; (ii) $\delta(G) \geq 5$ is best possible.

Main Result 2

Theorem

Let G be a graph of order n and minimum degree at least 5 . Then G contains a chorded cycle of length at most $300 \log _{2} n$.

Remarks: (i) Average degree 8 ; (ii) $\delta(G) \geq 5$ is best possible.

Figure: $\delta=\bar{d}=4$, no "short" chorded cycles when $n>300 \log _{2} n$

Main Result 2

Theorem

Let G be a graph of order n and minimum degree at least 5 . Then G contains a chorded cycle of length at most $300 \log _{2} n$.

Remarks: (i) Average degree 8; (ii) $\delta(G) \geq 5$ is best possible.

Figure: $\delta=\bar{d}=4$, no "short" chorded cycles when $n>300 \log _{2} n$
??? For simple graph with minimum degree at least 3, can we get a similar result? What about average degrees?

Main Result 2 - A Chorded Version of A Result of Bollobás and Thomason

```
Theorem (Bollobás and Thomason)
Let G be a graph of order n and size at least n+c(c\geq1). Then
g(G) \leq 2(\lfloorn/c\rfloor+1)\lfloor\mp@subsup{\operatorname{log}}{2}{2}2c\rfloor.
```


Proof Ideas for Main Result 1 - A Lemma

Lemma (Verstraëte,2003)

Let $G(A, B)$ be a bipartite graph with $|A|>a|B|^{b}$. Suppose that $d(v) \geq b$ for all $v \in A$. Then for some $r \geq 1$, there exists $A_{1}, A_{2}, \cdots, A_{r}, W \subset A$ and sets $B_{1}, B_{2}, \cdots, B_{r} \subset B$ such that for each $i=1,2, \cdots, r, G\left(A_{i}, B_{i}\right)=G\left[A_{i} \cup B_{i}\right]$ is a complete bipartite graph with $\left|A_{i}\right| \geq a$ and $\left|B_{i}\right|=b$, the B_{i} are distinct, the A_{i} are disjoint, $A=A_{1} \cup A_{2} \cup \cdots \cup A_{r} \cup W$ and $|W|<a|B|^{b}$.

Observation: If $G(A, B)$ is a bipartite graph with $|A|>3|B|^{3}+3(k-1)$ such that $d(v) \geq 3 k$ for all $v \in A$. Then, by applying the above lemma k times, we can find k vertex-disjoint copies of $K_{3,3}$, that is, k vertex-disjoint chorded 6-cycles.

Proof ideas for Main Result 1

Recall: G with $|G| \geq n_{k}$ and $\delta(G) \geq 3 k+8 \Rightarrow k$ vertex-disjoint chorded cycles of the same length.

- Set $n_{k}=\min \left\{n \in \mathbb{N}: n>28 k(k-1)^{3 k}\left(\frac{301^{2}}{2}\right)^{3 k}\left(\log _{2} n\right)^{6 k}\right\}$.

Proof ideas for Main Result 1

Recall: G with $|G| \geq n_{k}$ and $\delta(G) \geq 3 k+8 \Rightarrow k$ vertex-disjoint chorded cycles of the same length.

- Set $n_{k}=\min \left\{n \in \mathbb{N}: n>28 k(k-1)^{3 k}\left(\frac{301^{2}}{2}\right)^{3 k}\left(\log _{2} n\right)^{6 k}\right\}$.
- Let

$$
\mathcal{C}=\left\{\text { vertex-disjoint chorded cycles of length }<301 \log _{2} n\right\}
$$

such that $|\mathcal{C}|$ is maximal.

Proof ideas for Main Result 1

Recall: G with $|G| \geq n_{k}$ and $\delta(G) \geq 3 k+8 \Rightarrow k$ vertex-disjoint chorded cycles of the same length.

- Set $n_{k}=\min \left\{n \in \mathbb{N}: n>28 k(k-1)^{3 k}\left(\frac{301^{2}}{2}\right)^{3 k}\left(\log _{2} n\right)^{6 k}\right\}$.
- Let

$$
\mathcal{C}=\left\{\text { vertex-disjoint chorded cycles of length }<301 \log _{2} n\right\}
$$

such that $|\mathcal{C}|$ is maximal.

- Denote $V_{2}=\bigcup_{C \in \mathcal{C}} V(C)$.

Proof ideas for Main Result 1

Recall: G with $|G| \geq n_{k}$ and $\delta(G) \geq 3 k+8 \Rightarrow k$ vertex-disjoint chorded cycles of the same length.

- Set $n_{k}=\min \left\{n \in \mathbb{N}: n>28 k(k-1)^{3 k}\left(\frac{301^{2}}{2}\right)^{3 k}\left(\log _{2} n\right)^{6 k}\right\}$.
- Let

$$
\mathcal{C}=\left\{\text { vertex-disjoint chorded cycles of length }<301 \log _{2} n\right\}
$$

such that $|\mathcal{C}|$ is maximal.

- Denote $V_{2}=\bigcup_{C \in \mathcal{C}} V(C)$.
- May assume \mathcal{C} has no k vertex-disjoint chorded cycles of the same length.

Proof ideas for Main Result 1

Recall: G with $|G| \geq n_{k}$ and $\delta(G) \geq 3 k+8 \Rightarrow k$ vertex-disjoint chorded cycles of the same length.

- Set $n_{k}=\min \left\{n \in \mathbb{N}: n>28 k(k-1)^{3 k}\left(\frac{301^{2}}{2}\right)^{3 k}\left(\log _{2} n\right)^{6 k}\right\}$.
- Let

$$
\mathcal{C}=\left\{\text { vertex-disjoint chorded cycles of length }<301 \log _{2} n\right\}
$$

such that $|\mathcal{C}|$ is maximal.

- Denote $V_{2}=\bigcup_{C \in \mathcal{C}} V(C)$.
- May assume \mathcal{C} has no k vertex-disjoint chorded cycles of the same length.
- $\left|V_{2}\right| \leq(k-1) \frac{301^{2}}{2}\left(\log _{2} n\right)^{2}$.

Proof ideas for Main Result 1 Cont.

$$
\begin{aligned}
& \text { Let } V_{1}=V-V_{2} \\
& Y=\left\{v \in V_{1} \mid d_{V_{2}}(v) \geq 3 k\right\} \text { and } Z=\left\{v \in V_{1} \mid d_{V_{2}}(v)<3 k\right\}
\end{aligned}
$$

Proof ideas for Main Result 1 Cont.

$$
\begin{aligned}
& \text { Let } V_{1}=V-V_{2} \text {, } \\
& Y=\left\{v \in V_{1} \mid d_{V_{2}}(v) \geq 3 k\right\} \text { and } Z=\left\{v \in V_{1} \mid d_{V_{2}}(v)<3 k\right\}
\end{aligned}
$$

$V_{1} \quad V_{2}$

- May assume $|Y| \leq 3\left|V_{2}\right|^{3}+3(k-1)$.

Proof ideas for Main Result 1 Cont.

$$
\begin{aligned}
& \text { Let } V_{1}=V-V_{2} \\
& Y=\left\{v \in V_{1} \mid d_{V_{2}}(v) \geq 3 k\right\} \text { and } Z=\left\{v \in V_{1} \mid d_{V_{2}}(v)<3 k\right\}
\end{aligned}
$$

V_{1}

- May assume $|Y| \leq 3\left|V_{2}\right|^{3}+3(k-1)$.
- $|Z|=\left|V_{1}\right|-|Y|=n-\left|V_{2}\right|-|Y|>8|Y|$.

Proof ideas for Main Result 1 Cont.

$$
\begin{aligned}
& \text { Let } V_{1}=V-V_{2} \\
& Y=\left\{v \in V_{1} \mid d_{V_{2}}(v) \geq 3 k\right\} \text { and } Z=\left\{v \in V_{1} \mid d_{V_{2}}(v)<3 k\right\}
\end{aligned}
$$

V_{1}
-CMay assume $|Y| \leq 3\left|V_{2}\right|^{3}+3(k-1)$.

- $|Z|=\left|V_{1}\right|-|Y|=n-\left|V_{2}\right|-|Y|>8|Y|$.
- $G^{\prime}=G[Y \cup Z]$. For $z \in Z, d_{G^{\prime}}(z) \geq(3 k+8)-(3 k-1)=9$.

Proof ideas for Main Result 1 Cont.

$$
\begin{aligned}
& \text { Let } V_{1}=V-V_{2} \\
& Y=\left\{v \in V_{1} \mid d_{V_{2}}(v) \geq 3 k\right\} \text { and } Z=\left\{v \in V_{1} \mid d_{V_{2}}(v)<3 k\right\}
\end{aligned}
$$

-CMay assume $|Y| \leq 3\left|V_{2}\right|^{3}+3(k-1)$.

- $|Z|=\left|V_{1}\right|-|Y|=n-\left|V_{2}\right|-|Y|>8|Y|$.
- $G^{\prime}=G[Y \cup Z]$. For $z \in Z, d_{G^{\prime}}(z) \geq(3 k+8)-(3 k-1)=9$.
- $\sum d_{G^{\prime}}(x) \geq \sum_{z \in Z} d_{G^{\prime}}(z) \geq 9|Z| \geq 8(|Y|+|Z|) \Rightarrow \bar{d}\left(G^{\prime}\right) \geq 8$.

Proof ideas for Main Result 1 Cont.

$$
\begin{aligned}
& \text { Let } V_{1}=V-V_{2} \\
& Y=\left\{v \in V_{1} \mid d_{V_{2}}(v) \geq 3 k\right\} \text { and } Z=\left\{v \in V_{1} \mid d_{V_{2}}(v)<3 k\right\}
\end{aligned}
$$

-CMay assume $|Y| \leq 3\left|V_{2}\right|^{3}+3(k-1)$.

- $|Z|=\left|V_{1}\right|-|Y|=n-\left|V_{2}\right|-|Y|>8|Y|$.
- $G^{\prime}=G[Y \cup Z]$. For $z \in Z, d_{G^{\prime}}(z) \geq(3 k+8)-(3 k-1)=9$.
- $\sum d_{G^{\prime}}(x) \geq \sum_{z \in Z} d_{G^{\prime}}(z) \geq 9|Z| \geq 8(|Y|+|Z|) \Rightarrow \bar{d}\left(G^{\prime}\right) \geq 8$.
- G^{\prime} contains a subgraph H of minimum degree at least 5 .

Proof ideas for Main Result 1 Cont.

$$
\begin{aligned}
& \text { Let } V_{1}=V-V_{2} \\
& Y=\left\{v \in V_{1} \mid d_{V_{2}}(v) \geq 3 k\right\} \text { and } Z=\left\{v \in V_{1} \mid d_{V_{2}}(v)<3 k\right\}
\end{aligned}
$$

- CMay assume $|Y| \leq 3\left|V_{2}\right|^{3}+3(k-1)$.
- $|Z|=\left|V_{1}\right|-|Y|=n-\left|V_{2}\right|-|Y|>8|Y|$.
- $G^{\prime}=G[Y \cup Z]$. For $z \in Z, d_{G^{\prime}}(z) \geq(3 k+8)-(3 k-1)=9$.
- $\sum d_{G^{\prime}}(x) \geq \sum_{z \in Z} d_{G^{\prime}}(z) \geq 9|Z| \geq 8(|Y|+|Z|) \Rightarrow \bar{d}\left(G^{\prime}\right) \geq 8$.
- G^{\prime} contains a subgraph H of minimum degree at least 5 .
- By Main Result $2 \Rightarrow$ a chorded cycle of length at most $300 \log _{2} n$ in H, and which is disjoint with cycles in $\mathcal{C} \Rightarrow$ CONTRADICTION.

