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Some History Main Results Sketch of the Proof

Some History - Cycles

I Well-known fact: δ(G) ≥ 2⇒ C.

I Corrádi and Hajnal (1963): G with |G| ≥ 3k and δ(G) ≥ 2k
contains k vertex-disjoint cycles.

I Conjecture (Häggkvist, 1982): G of sufficiently large order and
δ(G) ≥ 4 contains 2 vertex-disjoint cycles of the same length.

I Conjecture (Thomassen, 1983): G with |G| ≥ nk and
δ(G) ≥ 2k contains k vertex-disjoint cycles of the same
length.

I Egawa (1996): Confirmed Thomassen’s conjecture for k ≥ 3
and nk = 17k + o(k).

I Verstraëte (2003): Gave a proof for all k for Thomassen’s
conjecture but with a larger nk.
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History Cont. - Chorded Cycles

u

v

x
y

Figure: A cycle with two chords xy and uv
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History Cont. - Chorded Cycles

I Question (Pósa,1961): Find conditions implying a graph
contains a chorded cycle.

I Considering a longest path: δ(G) ≥ 3⇒ C + a chord.

I Finkel (2008): G with |G| ≥ 4k and δ(G) ≥ 3k contains k
vertex-disjoint chorded cycles. (A generalization to Corrádi
and Hajnal’s result.)

I Recall: Verstraëte, G with |G| ≥ nk and δ(G) ≥ 2k contains
k vertex-disjoint cycles of the same length.

I Question: What about k vertex-disjoint chorded cycles of the
same length?
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Main Result 1

Theorem

Let k be a natural number. Then there exists a positive integer nk
such that if G is a graph of order at least nk and minimum degree
at least 3k + 8, then G contains k vertex-disjoint chorded cycles of
the same length.

Qusetion

Can we change the minimum degree condition to 3k? (Best
possible, K3k−1,n−3k+1. )
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Main Result 2

Theorem

Let G be a graph of order n and minimum degree at least 5. Then
G contains a chorded cycle of length at most 300 log2 n.

Remarks: (i) Average degree 8; (ii) δ(G) ≥ 5 is best possible.

Figure: δ = d = 4, no “short” chorded cycles when n > 300 log2 n

??? For simple graph with minimum degree at least 3, can we get
a similar result? What about average degrees?
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Main Result 2 – A Chorded Version of A Result of
Bollobás and Thomason

Theorem (Bollobás and Thomason)

Let G be a graph of order n and size at least n+ c (c ≥ 1). Then
g(G) ≤ 2(bn/cc+ 1)blog2 2cc.
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Proof Ideas for Main Result 1 – A Lemma

Lemma (Verstraëte,2003)

Let G(A,B) be a bipartite graph with |A| > a|B|b. Suppose that
d(v) ≥ b for all v ∈ A. Then for some r ≥ 1, there exists
A1, A2, · · · , Ar,W ⊂ A and sets B1, B2, · · · , Br ⊂ B such that
for each i = 1, 2, · · · , r, G(Ai, Bi) = G[Ai ∪Bi] is a complete
bipartite graph with |Ai| ≥ a and |Bi| = b, the Bi are distinct, the
Ai are disjoint, A = A1 ∪A2 ∪ · · · ∪Ar ∪W and |W | < a|B|b.

Observation: If G(A,B) is a bipartite graph with
|A| > 3|B|3 + 3(k − 1) such that d(v) ≥ 3k for all v ∈ A. Then,
by applying the above lemma k times, we can find k vertex-disjoint
copies of K3,3, that is, k vertex-disjoint chorded 6-cycles.
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Proof ideas for Main Result 1

Recall: G with |G| ≥ nk and δ(G) ≥ 3k + 8⇒ k vertex-disjoint
chorded cycles of the same length.

I Set nk = min{n ∈ N : n > 28k(k − 1)3k
(
3012

2

)3k
(log2 n)

6k}.

I Let

C = {vertex-disjoint chorded cycles of length < 301 log2 n}

such that |C| is maximal.

I Denote V2 =
⋃

C∈C V (C).

I May assume C has no k vertex-disjoint chorded cycles of the
same length.

I |V2| ≤ (k − 1)301
2

2 (log2 n)
2.
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Proof ideas for Main Result 1 Cont.
Let V1 = V − V2,
Y = {v ∈ V1 | dV2(v) ≥ 3k} andZ = {v ∈ V1 | dV2(v) < 3k}

I May assume |Y | ≤ 3|V2|3 + 3(k − 1).

I |Z| = |V1| − |Y | = n− |V2| − |Y | > 8|Y |.
I G′ = G[Y ∪Z]. For z ∈ Z, dG′(z) ≥ (3k+8)− (3k− 1) = 9.

I
∑
dG′(x) ≥

∑
z∈Z dG′(z) ≥ 9|Z| ≥ 8(|Y |+|Z|)⇒ d(G′) ≥ 8.

I G′ contains a subgraph H of minimum degree at least 5.

I By Main Result 2 ⇒ a chorded cycle of length at most 300 log2 n
in H, and which is disjoint with cycles in C ⇒
CONTRADICTION.
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Thank You
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