Disjoint chorded cycles of the same length

26th Cumberland Conference on CGC

May 24, 2013

Joint work with Guantao Chen, Ronald J. Gould, Kazuhide Hirohata, and Katsuhiro Ota

Outline

A ►

< E ► < E

э

Outline

Image: Image:

Outline

2 Main Results

-

• Well-known fact: $\delta(G) \ge 2 \Rightarrow C$.

- **→** → **→**

- Well-known fact: $\delta(G) \ge 2 \Rightarrow C$.
- ► Corrádi and Hajnal (1963): G with $|G| \ge 3k$ and $\delta(G) \ge 2k$ contains k vertex-disjoint cycles.

- Well-known fact: $\delta(G) \ge 2 \Rightarrow C$.
- ► Corrádi and Hajnal (1963): G with $|G| \ge 3k$ and $\delta(G) \ge 2k$ contains k vertex-disjoint cycles.
- ► Conjecture (Häggkvist, 1982): G of sufficiently large order and δ(G) ≥ 4 contains 2 vertex-disjoint cycles of the same length.

- Well-known fact: $\delta(G) \ge 2 \Rightarrow C$.
- ► Corrádi and Hajnal (1963): G with $|G| \ge 3k$ and $\delta(G) \ge 2k$ contains k vertex-disjoint cycles.
- ► Conjecture (Häggkvist, 1982): G of sufficiently large order and δ(G) ≥ 4 contains 2 vertex-disjoint cycles of the same length.
- Conjecture (Thomassen, 1983): G with $|G| \ge n_k$ and $\delta(G) \ge 2k$ contains k vertex-disjoint cycles of the same length.

- Well-known fact: $\delta(G) \ge 2 \Rightarrow C$.
- ► Corrádi and Hajnal (1963): G with $|G| \ge 3k$ and $\delta(G) \ge 2k$ contains k vertex-disjoint cycles.
- ► Conjecture (Häggkvist, 1982): G of sufficiently large order and δ(G) ≥ 4 contains 2 vertex-disjoint cycles of the same length.
- Conjecture (Thomassen, 1983): G with $|G| \ge n_k$ and $\delta(G) \ge 2k$ contains k vertex-disjoint cycles of the same length.
- ► Egawa (1996): Confirmed Thomassen's conjecture for k ≥ 3 and n_k = 17k + o(k).

伺 ト イ ヨ ト イ ヨ ト

- Well-known fact: $\delta(G) \ge 2 \Rightarrow C$.
- ► Corrádi and Hajnal (1963): G with $|G| \ge 3k$ and $\delta(G) \ge 2k$ contains k vertex-disjoint cycles.
- ► Conjecture (Häggkvist, 1982): G of sufficiently large order and δ(G) ≥ 4 contains 2 vertex-disjoint cycles of the same length.
- Conjecture (Thomassen, 1983): G with $|G| \ge n_k$ and $\delta(G) \ge 2k$ contains k vertex-disjoint cycles of the same length.
- ► Egawa (1996): Confirmed Thomassen's conjecture for k ≥ 3 and n_k = 17k + o(k).
- ► Verstraëte (2003): Gave a proof for all k for Thomassen's conjecture but with a larger n_k.

Figure: A cycle with two chords xy and uv

 Question (Pósa,1961): Find conditions implying a graph contains a chorded cycle.

I ≡ ▶ < </p>

- Question (Pósa,1961): Find conditions implying a graph contains a chorded cycle.
- Considering a longest path: $\delta(G) \ge 3 \Rightarrow C + a$ chord.

- Question (Pósa,1961): Find conditions implying a graph contains a chorded cycle.
- Considering a longest path: $\delta(G) \ge 3 \Rightarrow C + a$ chord.
- Finkel (2008): G with |G| ≥ 4k and δ(G) ≥ 3k contains k vertex-disjoint chorded cycles. (A generalization to Corrádi and Hajnal's result.)

- Question (Pósa,1961): Find conditions implying a graph contains a chorded cycle.
- Considering a longest path: $\delta(G) \ge 3 \Rightarrow C + a$ chord.
- Finkel (2008): G with |G| ≥ 4k and δ(G) ≥ 3k contains k vertex-disjoint chorded cycles. (A generalization to Corrádi and Hajnal's result.)
- ► Recall: Verstraëte, G with $|G| \ge n_k$ and $\delta(G) \ge 2k$ contains k vertex-disjoint cycles of the same length.

- Question (Pósa,1961): Find conditions implying a graph contains a chorded cycle.
- Considering a longest path: $\delta(G) \ge 3 \Rightarrow C + a$ chord.
- Finkel (2008): G with |G| ≥ 4k and δ(G) ≥ 3k contains k vertex-disjoint chorded cycles. (A generalization to Corrádi and Hajnal's result.)
- ► Recall: Verstraëte, G with $|G| \ge n_k$ and $\delta(G) \ge 2k$ contains k vertex-disjoint cycles of the same length.
- Question: What about k vertex-disjoint chorded cycles of the same length?

伺 ト イ ヨ ト イ ヨ ト

Theorem

Let k be a natural number. Then there exists a positive integer n_k such that if G is a graph of order at least n_k and minimum degree at least 3k + 8, then G contains k vertex-disjoint chorded cycles of the same length.

Theorem

Let k be a natural number. Then there exists a positive integer n_k such that if G is a graph of order at least n_k and minimum degree at least 3k + 8, then G contains k vertex-disjoint chorded cycles of the same length.

Qusetion

Can we change the minimum degree condition to 3k? (Best possible, $K_{3k-1,n-3k+1}$.)

Theorem

Let G be a graph of order n and minimum degree at least 5. Then G contains a chorded cycle of length at most $300 \log_2 n$.

.⊒ . ►

Theorem

Let G be a graph of order n and minimum degree at least 5. Then G contains a chorded cycle of length at most $300 \log_2 n$.

Remarks: (i) Average degree 8; (ii) $\delta(G) \ge 5$ is best possible.

Theorem

Let G be a graph of order n and minimum degree at least 5. Then G contains a chorded cycle of length at most $300 \log_2 n$.

Remarks: (i) Average degree 8; (ii) $\delta(G) \ge 5$ is best possible.

Figure: $\delta = \overline{d} = 4$, no "short" chorded cycles when $n > 300 \log_2 n$

Theorem

Let G be a graph of order n and minimum degree at least 5. Then G contains a chorded cycle of length at most $300 \log_2 n$.

Remarks: (i) Average degree 8; (ii) $\delta(G) \ge 5$ is best possible.

Figure: $\delta = \overline{d} = 4$, no "short" chorded cycles when $n > 300 \log_2 n$

??? For simple graph with minimum degree at least 3, can we get a similar result? What about average degrees?

Main Result 2 – A Chorded Version of A Result of Bollobás and Thomason

Theorem (Bollobás and Thomason)

Let G be a graph of order n and size at least $n + c \ (c \ge 1)$. Then $g(G) \le 2(\lfloor n/c \rfloor + 1) \lfloor \log_2 2c \rfloor$.

Proof Ideas for Main Result 1 – A Lemma

Lemma (Verstraëte,2003)

Let G(A, B) be a bipartite graph with $|A| > a|B|^b$. Suppose that $d(v) \ge b$ for all $v \in A$. Then for some $r \ge 1$, there exists $A_1, A_2, \dots, A_r, W \subset A$ and sets $B_1, B_2, \dots, B_r \subset B$ such that for each $i = 1, 2, \dots, r$, $G(A_i, B_i) = G[A_i \cup B_i]$ is a complete bipartite graph with $|A_i| \ge a$ and $|B_i| = b$, the B_i are distinct, the A_i are disjoint, $A = A_1 \cup A_2 \cup \dots \cup A_r \cup W$ and $|W| < a|B|^b$.

Observation: If G(A, B) is a bipartite graph with $|A| > 3|B|^3 + 3(k-1)$ such that $d(v) \ge 3k$ for all $v \in A$. Then, by applying the above lemma k times, we can find k vertex-disjoint copies of $K_{3,3}$, that is, k vertex-disjoint chorded 6-cycles.

Recall: G with $|G| \ge n_k$ and $\delta(G) \ge 3k + 8 \Rightarrow k$ vertex-disjoint chorded cycles of the same length.

• Set $n_k = \min\{n \in \mathbb{N} : n > 28k(k-1)^{3k} \left(\frac{301^2}{2}\right)^{3k} (\log_2 n)^{6k}\}.$

Recall: G with $|G| \ge n_k$ and $\delta(G) \ge 3k + 8 \Rightarrow k$ vertex-disjoint chorded cycles of the same length.

• Set $n_k = \min\{n \in \mathbb{N} : n > 28k(k-1)^{3k} \left(\frac{301^2}{2}\right)^{3k} (\log_2 n)^{6k}\}.$

Let

 $\mathcal{C} = \{\text{vertex-disjoint chorded cycles of length} < 301 \log_2 n \}$ such that $|\mathcal{C}|$ is maximal.

Recall: G with $|G| \ge n_k$ and $\delta(G) \ge 3k + 8 \Rightarrow k$ vertex-disjoint chorded cycles of the same length.

• Set $n_k = \min\{n \in \mathbb{N} : n > 28k(k-1)^{3k} \left(\frac{301^2}{2}\right)^{3k} (\log_2 n)^{6k}\}.$

Let

 $\mathcal{C}=\{\text{vertex-disjoint chorded cycles of length}<301\log_2n\}$ such that $|\mathcal{C}|$ is maximal.

• Denote $V_2 = \bigcup_{C \in \mathcal{C}} V(C)$.

Recall: G with $|G| \ge n_k$ and $\delta(G) \ge 3k + 8 \Rightarrow k$ vertex-disjoint chorded cycles of the same length.

• Set $n_k = \min\{n \in \mathbb{N} : n > 28k(k-1)^{3k} \left(\frac{301^2}{2}\right)^{3k} (\log_2 n)^{6k}\}.$

Let

 $\mathcal{C} = \{ \text{vertex-disjoint chorded cycles of length} < 301 \log_2 n \}$

such that $|\mathcal{C}|$ is maximal.

- Denote $V_2 = \bigcup_{C \in \mathcal{C}} V(C)$.
- ► May assume C has no k vertex-disjoint chorded cycles of the same length.

Recall: G with $|G| \ge n_k$ and $\delta(G) \ge 3k + 8 \Rightarrow k$ vertex-disjoint chorded cycles of the same length.

• Set $n_k = \min\{n \in \mathbb{N} : n > 28k(k-1)^{3k} \left(\frac{301^2}{2}\right)^{3k} (\log_2 n)^{6k}\}.$

Let

 $\mathcal{C} = \{ \mathsf{vertex-disjoint} \text{ chorded cycles of } \mathsf{length} < 301 \log_2 n \}$

such that |C| is maximal.

- Denote $V_2 = \bigcup_{C \in \mathcal{C}} V(C)$.
- ► May assume C has no k vertex-disjoint chorded cycles of the same length.
- ► $|V_2| \le (k-1)\frac{301^2}{2}(\log_2 n)^2.$

Proof ideas for Main Result 1 Cont.

Proof ideas for Main Result 1 Cont.

Proof ideas for Main Result 1 Cont.

Let $V_1 = V - V_2$, $Y = \{v \in V_1 \mid d_{V_2}(v) \ge 3k\}$ and $Z = \{v \in V_1 \mid d_{V_2}(v) < 3k\}$

► $|Z| = |V_1| - |Y| = n - |V_2| - |Y| > 8|Y|.$

Proof ideas for Main Result 1 Cont.

- $\blacktriangleright \ \ \hbox{May assume} \ \ |Y| \leq 3|V_2|^3 + 3(k-1).$
- ► $|Z| = |V_1| |Y| = n |V_2| |Y| > 8|Y|.$
- $G' = G[Y \cup Z]$. For $z \in Z$, $d_{G'}(z) \ge (3k+8) (3k-1) = 9$.

Proof ideas for Main Result 1 Cont.

- $\bullet \quad \bullet \quad \text{May assume} \quad |Y| \leq 3|V_2|^3 + 3(k-1).$
- ► $|Z| = |V_1| |Y| = n |V_2| |Y| > 8|Y|.$
- $G' = G[Y \cup Z]$. For $z \in Z$, $d_{G'}(z) \ge (3k+8) (3k-1) = 9$.
- ► $\sum d_{G'}(x) \ge \sum_{z \in Z} d_{G'}(z) \ge 9|Z| \ge 8(|Y|+|Z|) \Rightarrow \overline{d}(G') \ge 8.$

Proof ideas for Main Result 1 Cont.

- ► $|Z| = |V_1| |Y| = n |V_2| |Y| > 8|Y|.$
- $G' = G[Y \cup Z]$. For $z \in Z$, $d_{G'}(z) \ge (3k+8) (3k-1) = 9$.
- $\blacktriangleright \sum d_{G'}(x) \ge \sum_{z \in Z} d_{G'}(z) \ge 9|Z| \ge 8(|Y| + |Z|) \Rightarrow \overline{d}(G') \ge 8.$
- G' contains a subgraph H of minimum degree at least 5.

Proof ideas for Main Result 1 Cont.

- May assume $|Y| \le 3|V_2|^3 + 3(k-1).$
- ► $|Z| = |V_1| |Y| = n |V_2| |Y| > 8|Y|.$
- ▶ $G' = G[Y \cup Z]$. For $z \in Z$, $d_{G'}(z) \ge (3k+8) (3k-1) = 9$.
- $\blacktriangleright \sum d_{G'}(x) \ge \sum_{z \in Z} d_{G'}(z) \ge 9|Z| \ge 8(|Y| + |Z|) \Rightarrow \overline{d}(G') \ge 8.$
- G' contains a subgraph H of minimum degree at least 5.
- ▶ By \bigcirc Main Result 2 \Rightarrow a chorded cycle of length at most $300 \log_2 n$ in H, and which is disjoint with cycles in $C \Rightarrow$ CONTRADICTION.

Thank You

э

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶