# 3-Factor-criticality of vertex-transitive graphs 

Heping Zhang Wuyang Sun
Email: zhanghp@lzu.edu.cn

School of Mathematics and Statistics
Lanzhou University, Lanzhou, Gansu 730000
People's Republic of China

May 26th 2013


## Contents

(1) Introduction
(2) Conditional edge-connectivities
(3) The Proof Sketch for Theorem 1.6 about 3-factor-criticality
(4) A further result about $p$-factor-criticality

## (1) Introduction

(2) Conditional edge-connectivities
(3) The Proof Sketch for Theorem 1.6 about 3-factor-criticality
4. A further result about $p$-factor-criticality

## Vertex-transitive graphs

Let $G$ be a graph with vertex-set $V(G)$ and edge-set $E(G)$. Only finite graphs with no loops and parallel edges are considered in this talk.

A graph $G$ is said to be vertex-transitive if for any two vertices $x$ and $y$ in $G$ there is an automorphism $\varphi$ of $G$ such that $y=\varphi(x)$, That is, the automorphism group of $G$ can act transitively on the vertex-set of $G$

Vertex-transitive graphs include all Cayley graphs, and have been separately studied in group theory, graph theory and networks. In group theory, the automorphism group of vertex-transitive graphs is an algebraic object which is studied. In graph theory, Hamiltonicity and matching extendability of vertex-transitive graphs were studied. In network, the restricted edge-connectivity and cyclic edge-connectivity of vertex-transitive graphs were studied recently.

## Perfect matching and Tutte's theorem

A perfect matching of $G$ is a set of independent edges covering all the vertices in $G$. Petersen's Theorem (1890's): Any bridgeless cubic graph has a perfect matching.

Theorem 1.1 (Tutte, 1947)
A graph $G$ has a perfect matching if and only if $c_{0}(G-X) \leq|X|$ for any $X \subseteq V(G)$.


## Factor-critical graphs and bicritical graphs

The concepts of factor-critical graphs, bicritical graphs and $n$-extendable graphs were introduced by Gallai in 1963, by Lovász in 1972, and by Plummer in 1980 respectively.

- A graph $G$ is called factor-critical if the removal of any vertex of $G$ results in a graph with a perfect matching.
- A graph is called bicritical if the removal of any pair of distinct vertices of $G$ results in a graph with a perfect matching.
- A graph $G$ is said to be $k$-extendable if it is connected, has a set of $k$ independent lines and every set of $k$ independent lines in $G$ extends to (i.e. is a subset) a perfect matching of $G$. $(2 k<|V(G)|)$


## Factor-criticality and bicriticality of vertex-transitive

## graphs

## Theorem 1.2 (Lovász and Plummer, 1986)

If $G$ is a connected vertex-transitive graph of order $n$, then
(a) if $n$ is odd, $G$ is factor-critical, while
(b) if $n$ is even, $G$ is either elementary bipartite or bicritical.

Theorem 1.2.(a) can be an immediate consequence of Gallai-Edmonds Structure Theorem. The proof of Theorem 1.2(b) involves the edge-connectivity and super edge-connectivity of vertex-transitive graphs.
L. Lovász, M.D. Plummer, Matching Theory, North-Holland, Amsterdam, 1986.

## p-factor-critical graphs

The concepts of factor-critical and bicritical graphs were generalized to the concept of $p$-factor-critical graphs by Favaron in 1996 and by Yu in 1993, independently. A graph $G$ is said to be $p$-factor-critical, where $p$ is an integer of the same parity as $n$, if the removal of any set of $p$ vertices results in a graph with a perfect matching.

## Theorem 1.3 (Yu, 1993; Favaron,1996)

A graph $G$ is $p$-factor-critical if and only if $c_{0}(G-X) \leq|X|-p$ for every $X \subseteq V(G)$ with $|X| \geq p$.

## Theorem 1.4 (Favaron, 1996,2000)

(a)Every $p$-factor-critical graph of order $n(p<n)$ is $(p-2)$-factor-critical, (b)For even $p$, every non-bipartite $p$-extendable graph is $p$-factor-critical.

## p-factor-critical graphs

For a connected graph $G$, a vertex-cut of $G$ is a set of vertices whose removal disconnects $G$. The (vertex-)connectivity of $G$ which is not complete graph is the minimum cardinality over all the vertex-cuts of $G$, denoted by $\kappa(G)$.

An edge subset $F$ is called an edge-cut of $G$ if $G-F$ is disconnected. The edge-connectivity of $G$ is the minimum cardinality over all edge-cuts of $G$, denoted by $\lambda(G)$.

## Lemma 1.5 (Favarvon, 1996)

If a graph $G$ is $p$-factor-critical with $1 \leq p<|V(G)|$, then $\kappa(G) \geq p$ and $\lambda(G) \geq p+1$.

## The main result

Question: What about $p$-factor-criticality for vertex-transitive graphs for some integer $p$ with $p \geq 3$ ?

## The main result

Question: What about $p$-factor-criticality for vertex-transitive graphs for some integer $p$ with $p \geq 3$ ?

In case of $p=3$ we answer the question and obtain the following result.

## Theorem 1.6

A connected vertex-transitive graph of odd order at least 5 is 3-factor-critical if and only if it is not a cycle.

To prove this, we apply the vertex-connectivity, edge-connectivity and several conditional edge-connectivities of vertex-transitive graphs, which will be introduced in detail in Section 2.
(2) Conditional edge-connectivities

## (3) The Proof Sketch for Theorem 1.6 about 3-factor-criticality

4. A further result about $p$-factor-criticality

## Connectivity of vertex-transitive graphs

Watkins studied the connection between connectivity and vertex-degree for vertex-transitive graphs.

## Lemma 2.1 (Watkins,1970)

Let $G$ be a connected $k$-regular vertex-transitive graph. Then $\kappa(G)>\frac{2}{3} k$.

## Lemma 2.2 (Watkins,1970)

If $G$ is vertex-transitive with degree $k=4$ or 6 , then $\kappa(G)=k$.
M.E. Watkins, Connectivity of transitive graphs, J. Combin. Theory 8 (1970) 23-29.

## Edge-connectivity of vertex-transitive graphs

Let $\delta(G)=\min \{d(v): v \in V(G)\}$. It is well-known that $\lambda(G) \leq \delta(G)$. If $\lambda(G)=\delta(G)$, then $G$ is said to be maximally edge-connected.

## Lemma 2.3 (Mader,1971)

All connected vertex-transitive graphs are maximally edge-connected.
W. Mader, Minimale $n$-fach kantenzusammenhängenden Graphen, Math. Ann. 191 (1971) 21-28.

## Super edge-connectivity of vertex-transitive graphs

A connected graph $G$ is said to be super edge-connected, in short, super- $\lambda$, if each of its minimum edge-cut is $\nabla(v)$ for some $v \in V(G)$, the set of edges incident to $v$.

An imprimitive block of $G$ is a proper non-empty subset $X$ of $V(G)$ such that for any automorphism $\varphi$ of $G$, either $\varphi(X)=X$ or $\varphi(X) \cap X=\emptyset$.

## Theorem 2.4 (Tindell,1982)

A connected vertex-transitive graph $G$ with degree $k \geq 3$ is super- $\lambda$ if and only if there is no imprimitive block of $G$ which is a clique of size $k$.
R. Tindell, Edge connectivity properties of symmetric graphs, Preprint, Stevens Institute of Technology, Hoboken, NJ, 1982.

## Restricted edge-connectivity

For a connected graph $G$, an edge-cut $F$ of $G$ is said to be an $s$-restricted edge-cut if every component of $G-F$ has at least $s$ vertices. The $s$-restricted edge-connectivity of $G$ is the minimum cardinality over all $s$-restricted edge-cuts of $G$, denoted by $\lambda_{s}(G)$.

Let $\xi(G)$ be the minimum edge-degree of $G$. Esfahanian and Hakimi (1988) showed that if a connected graph $G$ of oder $n$ is not a star $K_{1, n-1}$, then $\lambda_{2}(G)$ is well-defined and $\lambda_{2}(G) \leq \xi(G)$. A connected graph $G$ is called to be maximally restricted edge-connected, if $\lambda_{2}(G)=\xi(G)$.

Furthermore, a maximally restricted edge-connected graph $G$ is called to be super restricted edge-connected, in short, super- $\lambda_{2}$, if every minimum 2-restricted edge-cut of $G$ isolates an edge.

## Theorem 2.5 (Xu, 2000)

Let $G$ be a connected vertex-transitive graph of order at least 4. Then $G$ is maximally restricted edge-connected if its order is odd or it has no triangle.

## Super restricted edge-connectivity

Wang studied the super restricted edge-connectivity of connected vertex-transitive graphs. The girth of a graph $G$ is the length of a shortest cycle in $G$.

## Theorem 2.6 (Wang, 2004)

If $G$ is a connected vertex-transitive graph with degree $k>2$ and girth $g>4$, then it is super- $\lambda_{2}$.

Junming Xu , Restricted edge-connectivity of vertex-transitive graphs, Chinese Ann. Math. Ser. A 21 (2000) 605-608.

Yingqian Wang, Super restricted edge-connectivity of vertex-transitive graphs, Discrete Math. 289 (2004) 199-205.

## 3-restricted edge-connectivity

Ou and Zhang studied the 3-restricted edge-connectivity of vertex-transitive graphs and proved the following results.

## Lemma 2.7 (Ou and Zhang, 2005)

If $G$ is a connected $k$-regular vertex-transitive graph of order at least 6 and girth $g \geq 4$, then either $\lambda_{3}=3 k-4$ or $\lambda_{3}$ is a divisor of $|V(G)|$ such that $2 k-2 \leq \lambda_{3} \leq 3 k-5$ unless $k=3$ and $g=4$.

Jianping Ou, Fuji Zhang, 3-restricted edge connectivity of vertex transitive graphs. Ars Combin. 74 (2005), 291 - 301.

## An improvement on Wang's result

Using Lemma 2.7, we make an improvement on Wang's result (Lemma 2.6) for vertex-transitive odd graphs.

## Lemma 2.8

If $G$ is a connected vertex-transitive odd graph with degree $k>2$ and girth $g>3$, then it is super- $\lambda_{2}$.

## Proof.

By Lemma 2.7, either $\lambda_{3}(G)=3 k-4$ or $\lambda_{3}(G)$ is a divisor of $|V(G)|$. Noting that $G$ is regular and $|V(G)|$ is odd, $k$ is even and $k \geq 4$. Then $d(Y)=k|Y|-2|E(G[Y])|$ is even for any $Y \subseteq V(G)$, implying $\lambda_{3}(G)$ is even.
Thus $\lambda_{3}(G)=3 k-4$. Note that a connected graph $H$ with a restricted edge-cut is super- $\lambda_{2}$ if and only if either $H$ has no 3-restricted edge-cut or $\lambda_{3}(H)>\xi(H)$.

Thus, $G$ is super- $\lambda_{2}$ since $\lambda_{3}(G)=3 k-4>2 k-2=\xi(G)$.
This short proof is pointed out by Prof. Junming Xu .
H. Zhang and W. Sun (LZU)

## Cyclic edge-connectivity

For a connected graph $G$, an edge-cut $F$ of $G$ is called a cyclic edge-cut if at least two components of $G-F$ contain cycles. The cyclic edge-connectivity of $G$ with a cyclic edge-cut is defined as the minimum cardinality over all cyclic edge-cuts of $G$, denoted by $\lambda_{c}(G)$.

## Theorem 2.9 (Wang and Zhang, 2009)

Let $G$ be a connected vertex-transitive graph with degree $k \geq 4$ and girth $g \geq 5$. Then $\lambda_{c}(G)=(k-2) g$.

Bing Wang, Zhao Zhang, On cyclic edge-connectivity of transitive graphs, Discrete Math. 309 (2009) 4555-4563.
(1) Introduction
(2) Conditional edge-connectivities
(3) The Proof Sketch for Theorem 1.6 about 3-factor-criticality
4. A further result about $p$-factor-criticality

## A useful lemma

A subset $X$ of $V(E)$ is called an independent set of a graph $G$ if $E(G[X])=\emptyset$. The independent number of $G$ is the maximum cardinality of an independent set of $G$, denoted by $\alpha(G)$.

## Lemma 3.1

Let $G$ be a connected vertex-transitive odd graph with degree $k \geq 4$. Then $\alpha(G)<(|V(G)|-1) / 2$.

Theorem 1.6: A connected vertex-transitive odd graph $G$ of order at least 5 is 3-factor-critical if and only if $G$ has the regularity degree $k \geq 4$.

## The Proof Sketch for Theorem 1.6

The "only if" part is trivial by Lemma 1.5. Next we will finish the "if" part.

Suppose that $G$ is not a cycle $(k \geq 4)$ and is not 3 -factor-critical. Note that $G$ is factor-critical by Theorem 1.2(a). By Lemma 1.3, there is a set $X \subseteq V(G)$ with $|X| \geq 3$ such that $\left(c_{0}(G-X)\right.$ denotes the number of odd components of $G-X)$

$$
|X|-3<c_{0}(G-X) \leq|X|-1 .
$$

Since $c_{0}(G-X)$ and $|X|$ have different parity,

$$
c_{0}(G-X)=|X|-1 .
$$

Let $H_{1}, H_{2}, \ldots, H_{t}$ be the odd components of $G-X$ where $t=c_{0}(G-X)$.

The Proof Sketch for Theorem 1.6 (continued)


## The Proof Sketch for Theorem 1.6 (continued)

Noting that $G$ is odd and is not a cycle, the degree $k$ of $G$ is even and $k \geq 4$. It follows that there is no imprimitive block of $G$ which is a clique of size $k$. By Lemma 2.4, $G$ is super- $\lambda$.

Claim 1. Every component of $G-X$ is odd.
If $G-X$ has an even component $H_{0}$, then $d\left(V\left(H_{i}\right)\right) \geq k$ for $0 \leq i \leq t$ since $\lambda(G)=k$ by Lemma 2.3. Thus,

$$
k|X|=k(t+1) \leq \sum_{i=0}^{t} d\left(V\left(H_{i}\right)\right) \leq d(X) \leq k|X|,
$$

which implies that $d\left(V\left(H_{0}\right)\right)=k$ and $X$ is an independent set of $G$. Hence $\nabla\left(V\left(H_{0}\right)\right)$ isolates a vertex $v$ in $G$ since $G$ is super- $\lambda$, and $v \in X$. This means that $G\left[V\left(H_{0}\right) \cup\{v\}\right]$ is a component of $G$, a contradiction. Claim 1 holds.

## The Proof Sketch for Theorem 1.6 (continued)

Claim 2. If $g \geq 4$, then $G-X$ has exactly one nontrivial component $H$, and $d(V(H))=2 k$.

Suppose that $g \geq 4$. Assume that $H_{1}, H_{2}, \ldots, H_{p}$ are nontrivial components and $H_{p+1}, H_{p+2}, \ldots, H_{t}$ are singletons. Note that $G$ is super- $\lambda_{2}$ by Theorem 2.7 and is maximally edge-connected by Lemma 2.3. It is not difficult to show that $d\left(V\left(H_{i}\right)\right)>2 k-2$ for $i=1,2, \ldots, p$. We have
$p(2 k-2)+k(t-p)<\sum_{i=1}^{p} d\left(V\left(H_{i}\right)\right)+k(t-p)=\sum_{i=1}^{t} d\left(V\left(H_{i}\right)\right)=d(X) \leq k|X|$.
Note that $t=c_{0}(G-X)=|X|-1$. It follows that $p<\frac{k}{k-2} \leq 2$.
If $p=0$, then $\bar{X}$ is an independent set of size $(|V(G)|-1) / 2$ in $G$, which contradicts that $\alpha(G)<(|V(G)|-1) / 2$ by Lemma 3.1.

So $p=1$. Then $2 k-2<d\left(V\left(H_{1}\right)\right) \leq 2 k$. Since $d\left(V\left(H_{1}\right)\right)=k\left|V\left(H_{1}\right)\right|-2\left|E\left(H_{1}\right)\right|$ is even, $d\left(V\left(H_{1}\right)\right)=2 k$. Claim 2 is proved.

## The Proof Sketch for Theorem 1.6 (continued)

Claim 3. $g \geq 4$.

If $g=3$, using the connectivity and super edge-connectivity of vertex-transitive odd graphs, we can show that the number of singletons in $G-X$ is more than the number of edges in $G[X]$, which will contradict the following lemma.

## Lemma 3.2

Let $G$ be a vertex-transitive graph with a triangle. Then, for each subset $X \subseteq V(G)$, the number of singletons in $G-X$ is not more than the number of edges in $G[X]$.

## The Proof Sketch for Theorem 1.6 (continued)

Claim 4. $g=4$ and $k=4$.
Suppose that $g \geq 4$. Since $k$ is even, $d(Y)=k|Y|-2|E(G[Y])|$ is even for any $Y \subseteq V(G)$. Hence $\lambda_{3}(G)$ is even. By Lemma 2.8, $\lambda_{3}(G)=3 k-4$.

Firstly, it is not difficult to show that $\nabla(V(H))$ is a 3-restricted edge cut of $G$. Then

$$
2 k=d(V(H)) \geq \lambda_{3}(G)=3 k-4,
$$

which implies that $k=4$.
Secondly, it is also not difficult to show that $\nabla(V(H))$ is a cyclic edge-cut of
$G$. Then

$$
2 k=d(V(H)) \geq \lambda_{c}(G)=(k-2) g,
$$

It follows that $g \leq \frac{2 k}{k-2}=4$.
Claim 4 holds.

## The Proof Sketch for Theorem 1.6 (continued)

From Claim 4, $g=4$ and $k=4$.


## Lemma 3.3

Let $G$ be a connected 4-regular vertex-transitive triangle-free odd graph. Then $G$ has no two distinct vertices $u$ and $v$ such that $N(u)=N(v)$.

## Lemma 3.4

Let $G$ be a connected vertex-transitive odd graph with degree $k=4$ and girth $g=4$. Then, for each edge $e$ in $G$, there are at least two distinct quadrangles containing $e$ and there is another edge $e^{\prime}$ adjacent to $e$ such that the number of quadrangles containing $e^{\prime}$ is equal to the number of quadrangles containing $e$.

We can show that either $G$ has two distinct vertices $u$ and $v$ such that $N(u)=N(v)$ which contradicts Lemma 3.3, or for every vertex $w$ there are two edges incident to $w$, one contained in two quadrangles and another contained in at least six quadrangles, by Lemma 3.4. On the other hand, we can find that for any 4-regular graph of girth 4 the second case is false. So a contradiction exists inevitably.
(1) Introduction
(2) Conditional edge-connectivities
(3) The Proof Sketch for Theorem 1.6 about 3-factor-criticality
4. A further result about $p$-factor-criticality

By discussing high order restricted edge-connectivity of vertex-transitive graphs, we obtain a further result about the $p$-factor-criticality of vertex-transitive graphs.
$\xi_{s}(G)=\min \{d(X): X \subseteq V(G)$ such that $|X|=s$ and $G[X]$ is connected $\}$, where $d(X)$ is the number of edges with exactly one end in $X$. A connected graph $G$ is called super $s$-restricted edge-connected, or simply super- $\lambda_{s}$, if $\lambda_{s}(G)=\xi_{s}(G)$ and every minimum $s$-restricted edge-cut of $G$ isolates one component $G[X]$ with $|X|=s$.

We obtain the following result about high order restricted edge-connectivity of vertex-transitive graphs.

## Theorem 4.1

Let $G$ be a connected vertex-transitive graph with degree $k>5$ and girth $g>5$. Then $G$ is super $\lambda_{s}$ for any positive integer $s$ with $s \leq 2 g$ when $k g>36$ and for any positive integer $s$ with $s \leq 2 g-2$ when $k g=36$.

Using Theorem 4.1, we show that a connected vertex-transitive non-bipartite graph with large girth is $p$-factor-critical.

## Theorem 4.2

Let $G$ be a connected vertex-transitive non-bipartite graph with degree $k \geq 6$ and girth $g \geq 6$ and $p$ be a positive integer with the same parity as $|V(G)|, p \leq k-1$. If $g$ also satisfies $g \geq \frac{k(p+1)}{2(k-2)}$, then $G$ is $p$-factor-critical.

If we relax the restriction on the girth, then there is such vertex-transitive graph $G$ that $G$ satisfies the necessary condition $(\kappa(G) \geq p$ and $\lambda(G) \geq p+1)$ of $p$-factor-critical graphs in Lemma 1.5 but is not $p$-factor-critical.

Example. Let $H_{1}$ and $H_{2}$ be two graphs. The lexicographic product $G$ of $H_{1}$ and $H_{2}$, denoted by $G=H_{1} \circ H_{2}$, is defined as follows: $V(G)=V\left(H_{1}\right) \times V\left(H_{2}\right)$, and $\left[\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right] \in E(G)$ if and only if $\left(x_{1}, y_{1}\right) \in E\left(H_{1}\right)$ or $x_{1}=y_{1}$ and $\left(x_{2}, y_{2}\right) \in E\left(H_{2}\right)$.

Let $G=C_{m} \circ K_{2 n+1}$, where $m \geq 4$. Then $G$ is vertex-transitive, the vertex-connectivity $\kappa(G)=4 n+2$ and edge-connectivity $\lambda(G)=6 n+2$. But $G$ is not $(4 n+2)$-factor-critical.


## THANK <br> YOU!

