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Vertex-transitive graphs

Let 𝐺 be a graph with vertex-set 𝑉 (𝐺) and edge-set 𝐸(𝐺). Only finite

graphs with no loops and parallel edges are considered in this talk.

A graph 𝐺 is said to be vertex-transitive if for any two vertices 𝑥 and 𝑦 in 𝐺

there is an automorphism 𝜙 of 𝐺 such that 𝑦 = 𝜙(𝑥), That is, the automorphism

group of 𝐺 can act transitively on the vertex-set of 𝐺

Vertex-transitive graphs include all Cayley graphs, and have been separately

studied in group theory, graph theory and networks. In group theory, the

automorphism group of vertex-transitive graphs is an algebraic object which is

studied. In graph theory, Hamiltonicity and matching extendability of

vertex-transitive graphs were studied. In network, the restricted edge-connectivity

and cyclic edge-connectivity of vertex-transitive graphs were studied recently.
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Perfect matching and Tutte’s theorem

A perfect matching of 𝐺 is a set of independent edges covering all the

vertices in 𝐺. Petersen’s Theorem (1890’s): Any bridgeless cubic graph has a

perfect matching.

Theorem 1.1 (Tutte, 1947)

A graph 𝐺 has a perfect matching if and only if 𝑐0(𝐺−𝑋) ≤ |𝑋| for any
𝑋 ⊆ 𝑉 (𝐺).
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Factor-critical graphs and bicritical graphs

The concepts of factor-critical graphs, bicritical graphs and 𝑛-extendable

graphs were introduced by Gallai in 1963, by Lovász in 1972, and by Plummer in

1980 respectively.

� A graph 𝐺 is called factor-critical if the removal of any vertex of 𝐺 results in a

graph with a perfect matching.

� A graph is called bicritical if the removal of any pair of distinct vertices of 𝐺

results in a graph with a perfect matching.

� A graph 𝐺 is said to be 𝑘-extendable if it is connected, has a set of 𝑘

independent lines and every set of 𝑘 independent lines in 𝐺 extends to (i.e. is a

subset) a perfect matching of 𝐺. (2𝑘 < |𝑉 (𝐺)|)
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Factor-criticality and bicriticality of vertex-transitive

graphs

Theorem 1.2 (Lovász and Plummer, 1986)

If 𝐺 is a connected vertex-transitive graph of order 𝑛, then

(a) if 𝑛 is odd, 𝐺 is factor-critical, while

(b) if 𝑛 is even, 𝐺 is either elementary bipartite or bicritical.

Theorem 1.2.(a) can be an immediate consequence of Gallai-Edmonds

Structure Theorem. The proof of Theorem 1.2(b) involves the edge-connectivity

and super edge-connectivity of vertex-transitive graphs.

L. Lovász, M.D. Plummer, Matching Theory, North-Holland, Amsterdam, 1986.
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𝑝-factor-critical graphs

The concepts of factor-critical and bicritical graphs were generalized to the

concept of 𝑝-factor-critical graphs by Favaron in 1996 and by Yu in 1993,

independently. A graph 𝐺 is said to be 𝑝-factor-critical, where 𝑝 is an integer of

the same parity as 𝑛, if the removal of any set of 𝑝 vertices results in a graph

with a perfect matching.

Theorem 1.3 (Yu, 1993; Favaron,1996)

A graph 𝐺 is 𝑝-factor-critical if and only if 𝑐0(𝐺−𝑋) ≤ |𝑋| − 𝑝 for every

𝑋 ⊆ 𝑉 (𝐺) with |𝑋| ≥ 𝑝.

Theorem 1.4 (Favaron, 1996,2000)

(a)Every 𝑝-factor-critical graph of order 𝑛 (𝑝 < 𝑛) is (𝑝− 2)-factor-critical,

(b)For even 𝑝, every non-bipartite 𝑝-extendable graph is 𝑝-factor-critical.
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𝑝-factor-critical graphs

For a connected graph 𝐺, a vertex-cut of 𝐺 is a set of vertices whose

removal disconnects 𝐺. The (vertex-)connectivity of 𝐺 which is not complete

graph is the minimum cardinality over all the vertex-cuts of 𝐺, denoted by 𝜅(𝐺).

An edge subset 𝐹 is called an edge-cut of 𝐺 if 𝐺− 𝐹 is disconnected. The

edge-connectivity of 𝐺 is the minimum cardinality over all edge-cuts of 𝐺,

denoted by 𝜆(𝐺).

Lemma 1.5 (Favarvon, 1996)

If a graph 𝐺 is 𝑝-factor-critical with 1 ≤ 𝑝 < |𝑉 (𝐺)|, then 𝜅(𝐺) ≥ 𝑝 and

𝜆(𝐺) ≥ 𝑝+ 1.
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The main result

Question: What about 𝑝-factor-criticality for vertex-transitive graphs for

some integer 𝑝 with 𝑝 ≥ 3?

In case of 𝑝 = 3 we answer the question and obtain the following result.

Theorem 1.6
A connected vertex-transitive graph of odd order at least 5 is 3-factor-critical if

and only if it is not a cycle.

To prove this, we apply the vertex-connectivity, edge-connectivity and several

conditional edge-connectivities of vertex-transitive graphs, which will be

introduced in detail in Section 2.
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Connectivity of vertex-transitive graphs

Watkins studied the connection between connectivity and vertex-degree for

vertex-transitive graphs.

Lemma 2.1 (Watkins,1970)

Let 𝐺 be a connected 𝑘-regular vertex-transitive graph. Then 𝜅(𝐺) > 2
3𝑘.

Lemma 2.2 (Watkins,1970)

If 𝐺 is vertex-transitive with degree 𝑘 = 4 or 6, then 𝜅(𝐺) = 𝑘.

M.E. Watkins, Connectivity of transitive graphs, J. Combin. Theory 8 (1970) 23-29.
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Edge-connectivity of vertex-transitive graphs

Let 𝛿(𝐺)=min{𝑑(𝑣) : 𝑣 ∈ 𝑉 (𝐺)}. It is well-known that 𝜆(𝐺) ≤ 𝛿(𝐺). If

𝜆(𝐺) = 𝛿(𝐺), then 𝐺 is said to be maximally edge-connected.

Lemma 2.3 (Mader,1971)

All connected vertex-transitive graphs are maximally edge-connected.

W. Mader, Minimale 𝑛-fach kantenzusammenhängenden Graphen, Math. Ann. 191 (1971)

21-28.
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Super edge-connectivity of vertex-transitive graphs

A connected graph 𝐺 is said to be super edge-connected, in short, super-𝜆,

if each of its minimum edge-cut is ∇(𝑣) for some 𝑣 ∈ 𝑉 (𝐺), the set of edges

incident to 𝑣.

An imprimitive block of 𝐺 is a proper non-empty subset 𝑋 of 𝑉 (𝐺) such

that for any automorphism 𝜙 of 𝐺, either 𝜙(𝑋) = 𝑋 or 𝜙(𝑋) ∩𝑋 = ∅.

Theorem 2.4 (Tindell,1982)

A connected vertex-transitive graph 𝐺 with degree 𝑘 ≥ 3 is super-𝜆 if and only if

there is no imprimitive block of 𝐺 which is a clique of size 𝑘.

R. Tindell, Edge connectivity properties of symmetric graphs, Preprint, Stevens Institute of

Technology, Hoboken, NJ, 1982.
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Restricted edge-connectivity

For a connected graph 𝐺, an edge-cut 𝐹 of 𝐺 is said to be an 𝑠-restricted

edge-cut if every component of 𝐺− 𝐹 has at least 𝑠 vertices. The 𝑠-restricted

edge-connectivity of 𝐺 is the minimum cardinality over all 𝑠-restricted edge-cuts

of 𝐺, denoted by 𝜆𝑠(𝐺).

Let 𝜉(𝐺) be the minimum edge-degree of 𝐺. Esfahanian and Hakimi (1988)

showed that if a connected graph 𝐺 of oder 𝑛 is not a star 𝐾1,𝑛−1, then 𝜆2(𝐺) is

well-defined and 𝜆2(𝐺) ≤ 𝜉(𝐺). A connected graph 𝐺 is called to be maximally

restricted edge-connected, if 𝜆2(𝐺) = 𝜉(𝐺).

Furthermore, a maximally restricted edge-connected graph 𝐺 is called to be

super restricted edge-connected, in short, super-𝜆2, if every minimum 2-restricted

edge-cut of 𝐺 isolates an edge.

Theorem 2.5 (Xu, 2000)

Let 𝐺 be a connected vertex-transitive graph of order at least 4. Then 𝐺 is

maximally restricted edge-connected if its order is odd or it has no triangle.
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Super restricted edge-connectivity

Wang studied the super restricted edge-connectivity of connected

vertex-transitive graphs. The girth of a graph 𝐺 is the length of a shortest cycle

in 𝐺.

Theorem 2.6 (Wang, 2004)

If 𝐺 is a connected vertex-transitive graph with degree 𝑘 > 2 and girth 𝑔 > 4,

then it is super-𝜆2.

Junming Xu, Restricted edge-connectivity of vertex-transitive graphs, Chinese Ann. Math.

Ser. A 21 (2000) 605-608.

Yingqian Wang, Super restricted edge-connectivity of vertex-transitive graphs, Discrete

Math. 289 (2004) 199-205.
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3-restricted edge-connectivity

Ou and Zhang studied the 3-restricted edge-connectivity of vertex-transitive

graphs and proved the following results.

Lemma 2.7 (Ou and Zhang, 2005)

If 𝐺 is a connected 𝑘-regular vertex-transitive graph of order at least 6 and girth

𝑔 ≥ 4, then either 𝜆3 = 3𝑘 − 4 or 𝜆3 is a divisor of |𝑉 (𝐺)| such that

2𝑘 − 2 ≤ 𝜆3 ≤ 3𝑘 − 5 unless 𝑘 = 3 and 𝑔 = 4.

Jianping Ou, Fuji Zhang, 3-restricted edge connectivity of vertex transitive graphs. Ars

Combin. 74 (2005), 291–301.
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An improvement on Wang’s result

Using Lemma 2.7, we make an improvement on Wang’s result (Lemma 2.6)

for vertex-transitive odd graphs.

Lemma 2.8
If 𝐺 is a connected vertex-transitive odd graph with degree 𝑘 > 2 and girth

𝑔 > 3, then it is super-𝜆2.

Proof.

By Lemma 2.7, either 𝜆3(𝐺) = 3𝑘 − 4 or 𝜆3(𝐺) is a divisor of |𝑉 (𝐺)|. Noting
that 𝐺 is regular and |𝑉 (𝐺)| is odd, 𝑘 is even and 𝑘 ≥ 4. Then

𝑑(𝑌 ) = 𝑘|𝑌 | − 2|𝐸(𝐺[𝑌 ])| is even for any 𝑌 ⊆ 𝑉 (𝐺), implying 𝜆3(𝐺) is even.

Thus 𝜆3(𝐺) = 3𝑘 − 4. Note that a connected graph 𝐻 with a restricted edge-cut

is super-𝜆2 if and only if either 𝐻 has no 3-restricted edge-cut or 𝜆3(𝐻) > 𝜉(𝐻).

Thus, 𝐺 is super-𝜆2 since 𝜆3(𝐺) = 3𝑘 − 4 > 2𝑘 − 2 = 𝜉(𝐺).

This short proof is pointed out by Prof. Junming Xu.
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Cyclic edge-connectivity

For a connected graph 𝐺, an edge-cut 𝐹 of 𝐺 is called a cyclic edge-cut if at

least two components of 𝐺− 𝐹 contain cycles. The cyclic edge-connectivity of 𝐺

with a cyclic edge-cut is defined as the minimum cardinality over all cyclic

edge-cuts of 𝐺, denoted by 𝜆𝑐(𝐺).

Theorem 2.9 (Wang and Zhang, 2009)

Let 𝐺 be a connected vertex-transitive graph with degree 𝑘 ≥ 4 and girth 𝑔 ≥ 5.

Then 𝜆𝑐(𝐺) = (𝑘 − 2)𝑔.

Bing Wang, Zhao Zhang, On cyclic edge-connectivity of transitive graphs, Discrete Math.

309 (2009) 4555-4563.
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A useful lemma

A subset 𝑋 of 𝑉 (𝐸) is called an independent set of a graph 𝐺 if

𝐸(𝐺[𝑋]) = ∅. The independent number of 𝐺 is the maximum cardinality of an

independent set of 𝐺, denoted by 𝛼(𝐺).

Lemma 3.1
Let 𝐺 be a connected vertex-transitive odd graph with degree 𝑘 ≥ 4. Then

𝛼(𝐺) < (|𝑉 (𝐺)| − 1)/2.

Theorem 1.6: A connected vertex-transitive odd graph 𝐺 of order at least 5 is

3-factor-critical if and only if 𝐺 has the regularity degree 𝑘 ≥ 4.
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The Proof Sketch for Theorem 1.6

The “only if” part is trivial by Lemma 1.5. Next we will finish the “if” part.

Suppose that 𝐺 is not a cycle (𝑘 ≥ 4) and is not 3-factor-critical. Note that

𝐺 is factor-critical by Theorem 1.2(a). By Lemma 1.3, there is a set 𝑋 ⊆ 𝑉 (𝐺)

with |𝑋| ≥ 3 such that (𝑐0(𝐺−𝑋) denotes the number of odd components of

𝐺−𝑋)

|𝑋| − 3 < 𝑐0(𝐺−𝑋) ≤ |𝑋| − 1.

Since 𝑐0(𝐺−𝑋) and |𝑋| have different parity,

𝑐0(𝐺−𝑋) = |𝑋| − 1.

Let 𝐻1, 𝐻2, . . ., 𝐻𝑡 be the odd components of 𝐺−𝑋 where 𝑡 = 𝑐0(𝐺−𝑋).
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The Proof Sketch for Theorem 1.6 (continued)
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The Proof Sketch for Theorem 1.6 (continued)

Noting that 𝐺 is odd and is not a cycle, the degree 𝑘 of 𝐺 is even and

𝑘 ≥ 4. It follows that there is no imprimitive block of 𝐺 which is a clique of size

𝑘. By Lemma 2.4, 𝐺 is super-𝜆.

Claim 1. Every component of 𝐺−𝑋 is odd.

If 𝐺−𝑋 has an even component 𝐻0, then 𝑑(𝑉 (𝐻𝑖)) ≥ 𝑘 for 0 ≤ 𝑖 ≤ 𝑡 since

𝜆(𝐺) = 𝑘 by Lemma 2.3. Thus,

𝑘|𝑋| = 𝑘(𝑡+ 1) ≤
𝑡∑︁

𝑖=0

𝑑(𝑉 (𝐻𝑖)) ≤ 𝑑(𝑋) ≤ 𝑘|𝑋|,

which implies that 𝑑(𝑉 (𝐻0)) = 𝑘 and 𝑋 is an independent set of 𝐺. Hence

∇(𝑉 (𝐻0)) isolates a vertex 𝑣 in 𝐺 since 𝐺 is super-𝜆, and 𝑣 ∈ 𝑋. This means

that 𝐺[𝑉 (𝐻0) ∪ {𝑣}] is a component of 𝐺, a contradiction. Claim 1 holds.
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The Proof Sketch for Theorem 1.6 (continued)

Claim 2. If 𝑔 ≥ 4, then 𝐺−𝑋 has exactly one nontrivial component

𝐻, and 𝑑(𝑉 (𝐻)) = 2𝑘.

Suppose that 𝑔 ≥ 4. Assume that 𝐻1, 𝐻2, . . ., 𝐻𝑝 are nontrivial

components and 𝐻𝑝+1, 𝐻𝑝+2, . . ., 𝐻𝑡 are singletons. Note that 𝐺 is super-𝜆2 by

Theorem 2.7 and is maximally edge-connected by Lemma 2.3. It is not difficult to

show that 𝑑(𝑉 (𝐻𝑖)) > 2𝑘 − 2 for 𝑖 = 1, 2, . . . , 𝑝. We have

𝑝(2𝑘− 2) + 𝑘(𝑡− 𝑝) <

𝑝∑︁
𝑖=1

𝑑(𝑉 (𝐻𝑖)) + 𝑘(𝑡− 𝑝) =

𝑡∑︁
𝑖=1

𝑑(𝑉 (𝐻𝑖)) = 𝑑(𝑋) ≤ 𝑘|𝑋|.

Note that 𝑡 = 𝑐0(𝐺−𝑋) = |𝑋| − 1. It follows that 𝑝 < 𝑘
𝑘−2 ≤ 2.

If 𝑝 = 0, then 𝑋 is an independent set of size (|𝑉 (𝐺)| − 1)/2 in 𝐺, which

contradicts that 𝛼(𝐺) < (|𝑉 (𝐺)| − 1)/2 by Lemma 3.1.

So 𝑝 = 1. Then 2𝑘 − 2 < 𝑑(𝑉 (𝐻1)) ≤ 2𝑘. Since

𝑑(𝑉 (𝐻1)) = 𝑘|𝑉 (𝐻1)| − 2|𝐸(𝐻1)| is even, 𝑑(𝑉 (𝐻1)) = 2𝑘. Claim 2 is proved.
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The Proof Sketch for Theorem 1.6 (continued)

Claim 3. 𝑔 ≥ 4.

If 𝑔 = 3, using the connectivity and super edge-connectivity of

vertex-transitive odd graphs, we can show that the number of singletons in

𝐺−𝑋 is more than the number of edges in 𝐺[𝑋], which will contradict the

following lemma.

Lemma 3.2
Let 𝐺 be a vertex-transitive graph with a triangle. Then, for each subset

𝑋 ⊆ 𝑉 (𝐺), the number of singletons in 𝐺−𝑋 is not more than the number of

edges in 𝐺[𝑋].
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The Proof Sketch for Theorem 1.6 (continued)

Claim 4. 𝑔 = 4 and 𝑘 = 4.

Suppose that 𝑔 ≥ 4. Since 𝑘 is even, 𝑑(𝑌 ) = 𝑘|𝑌 | − 2|𝐸(𝐺[𝑌 ])| is even for

any 𝑌 ⊆ 𝑉 (𝐺). Hence 𝜆3(𝐺) is even. By Lemma 2.8, 𝜆3(𝐺) = 3𝑘 − 4.

Firstly, it is not difficult to show that ∇(𝑉 (𝐻)) is a 3-restricted edge cut of

𝐺. Then

2𝑘 = 𝑑(𝑉 (𝐻)) ≥ 𝜆3(𝐺) = 3𝑘 − 4,

which implies that 𝑘 = 4.

Secondly, it is also not difficult to show that ∇(𝑉 (𝐻)) is a cyclic edge-cut of

𝐺. Then

2𝑘 = 𝑑(𝑉 (𝐻)) ≥ 𝜆𝑐(𝐺) = (𝑘 − 2)𝑔,

It follows that 𝑔 ≤ 2𝑘
𝑘−2 = 4.

Claim 4 holds.
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The Proof Sketch for Theorem 1.6 (continued)

From Claim 4, 𝑔 = 4 and 𝑘 = 4.

| |X

| | 2X -

Independent
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A nontrivial
component H
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Lemma 3.3
Let 𝐺 be a connected 4-regular vertex-transitive triangle-free odd graph. Then 𝐺

has no two distinct vertices 𝑢 and 𝑣 such that 𝑁(𝑢) = 𝑁(𝑣).

Lemma 3.4
Let 𝐺 be a connected vertex-transitive odd graph with degree 𝑘 = 4 and girth

𝑔 = 4. Then, for each edge 𝑒 in 𝐺, there are at least two distinct quadrangles

containing 𝑒 and there is another edge 𝑒′ adjacent to 𝑒 such that the number of

quadrangles containing 𝑒′ is equal to the number of quadrangles containing 𝑒.

We can show that either 𝐺 has two distinct vertices 𝑢 and 𝑣 such that

𝑁(𝑢) = 𝑁(𝑣) which contradicts Lemma 3.3, or for every vertex 𝑤 there are two

edges incident to 𝑤, one contained in two quadrangles and another contained in

at least six quadrangles, by Lemma 3.4. On the other hand, we can find that for

any 4-regular graph of girth 4 the second case is false. So a contradiction exists

inevitably.
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By discussing high order restricted edge-connectivity of vertex-transitive

graphs, we obtain a further result about the 𝑝-factor-criticality of vertex-transitive

graphs.

𝜉𝑠(𝐺) = min{𝑑(𝑋) : 𝑋 ⊆ 𝑉 (𝐺) such that |𝑋| = 𝑠 and 𝐺[𝑋] is connected},
where 𝑑(𝑋) is the number of edges with exactly one end in 𝑋. A connected

graph 𝐺 is called super 𝑠-restricted edge-connected, or simply super-𝜆𝑠, if

𝜆𝑠(𝐺) = 𝜉𝑠(𝐺) and every minimum 𝑠-restricted edge-cut of 𝐺 isolates one

component 𝐺[𝑋] with |𝑋| = 𝑠.

We obtain the following result about high order restricted edge-connectivity

of vertex-transitive graphs.

Theorem 4.1
Let 𝐺 be a connected vertex-transitive graph with degree 𝑘 > 5 and girth 𝑔 > 5.

Then 𝐺 is super-𝜆𝑠 for any positive integer 𝑠 with 𝑠 ≤ 2𝑔 when 𝑘𝑔 > 36 and for

any positive integer 𝑠 with 𝑠 ≤ 2𝑔 − 2 when 𝑘𝑔 = 36.
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Using Theorem 4.1, we show that a connected vertex-transitive non-bipartite

graph with large girth is 𝑝-factor-critical.

Theorem 4.2
Let 𝐺 be a connected vertex-transitive non-bipartite graph with degree 𝑘 ≥ 6 and

girth 𝑔 ≥ 6 and 𝑝 be a positive integer with the same parity as |𝑉 (𝐺)|, 𝑝 ≤ 𝑘− 1.

If 𝑔 also satisfies 𝑔 ≥ 𝑘(𝑝+1)
2(𝑘−2) , then 𝐺 is 𝑝-factor-critical.

If we relax the restriction on the girth, then there is such vertex-transitive

graph 𝐺 that 𝐺 satisfies the necessary condition (𝜅(𝐺) ≥ 𝑝 and 𝜆(𝐺) ≥ 𝑝+ 1) of

𝑝-factor-critical graphs in Lemma 1.5 but is not 𝑝-factor-critical.

H. Zhang and W. Sun (LZU) 2013-5-26 28 / 30



Example. Let 𝐻1 and 𝐻2 be two graphs. The lexicographic product 𝐺 of

𝐻1 and 𝐻2, denoted by 𝐺 = 𝐻1 ∘𝐻2, is defined as follows:

𝑉 (𝐺) = 𝑉 (𝐻1)× 𝑉 (𝐻2), and [(𝑥1, 𝑥2), (𝑦1, 𝑦2)] ∈ 𝐸(𝐺) if and only if

(𝑥1, 𝑦1) ∈ 𝐸(𝐻1) or 𝑥1 = 𝑦1 and (𝑥2, 𝑦2) ∈ 𝐸(𝐻2).

Let 𝐺 = 𝐶𝑚 ∘𝐾2𝑛+1, where 𝑚 ≥ 4. Then 𝐺 is vertex-transitive, the

vertex-connectivity 𝜅(𝐺) = 4𝑛+ 2 and edge-connectivity 𝜆(𝐺) = 6𝑛+ 2. But 𝐺

is not (4𝑛+ 2)-factor-critical.
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THANK YOU!
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