MATH 1710 Vocabulary Unit 1.a Practice Dr. Otts 09F

Cartesian Coordinate System (aka_____) is a _____ number line (the_____) intersecting with a _____ number line (the_____) at right angles at the zero coordinates of each line (the _____). Quadrants are the ______ areas of the Cartesian coordinate system formed by the intersecting number lines. Quadrants are designated by ______ from _____ to _____ beginning in the upper right and proceeding _____. x-axis is the _____ number line. From 0 to the _____ is negative, from o to the ______ is positive. y-axis is the _____ number line. From 0 down is _____, from o up is _____. The **Origin** is the intersection of the two ______ at their , thus its coordinates are (,). A **Point** is any location on the _____ coordinate system. Every point has a _____ and a _____ component that establish its position on the coordinate plane in relation to the An **Ordered Pair** is the pair of coordinates that ______ the location of a point on the coordinate plane in relation to the _____. The ordered pair gives the ______ to the point from the _____ Ordered means that the ______-coordinate ALWAYS comes first and the -coordinate ALWAYS comes second, separated by a . The **x-coordinate** gives the _____ and _____ of the point from the origin along the ______ number line, the _____axis. The x-coordinate will ALWAYS be listed ______ in an ordered pair. The **y-coordinate** gives the _____ and _____ of the point from the origin along the ______number line, the _____-axis. The y-coordinate will ______ be listed second in an ordered

pair.

Plot: to ______ a point on the coordinate system starting at the _____ and using the ordered pair of coordinates, first _____ then **linear equation**: an equation in one or more ______ in which no exponent has a power other than _____. Called <u>line</u>ar because the graph of a linear equation in two variables is a The **Standard Form** of a Linear equation in two variables is: _____ + _____ = ____, where _____, ____, and _____ are _____ and _____ are _____ in alphabetical order. The **Solution of a linear equation** in two variables is the set of all that satisfy (make a true statement of) the equation. When we try to graph all the _____, we will get a _____. Three Methods to graph a line: 1._____ 2._____ 3._____ **The graph of a line**: the representation of the ______ of a linear equation in two variables on the coordinate system. An ordered pair is **on the line** when its coordinates are a to the equation.

Intercepts: the point where the line crosses one of the ______. The ______ of the intercept specifies which _______ is crossed and which coordinate will probably have a value other than ______. The only time both coordinates are ______ is when the line intercepts the

The *x*-intercept is where the line crosses the _____-axis and has coordinates (_____, ___).

The *y*-intercept is where the line crosses the _____ axis and has coordinates (_____, ____).

Slope: We use the letter <u>m</u> to represent slope because DeCartes is French. The slope tells us the RATE of Change between points on the same line. It also gives directions from a point on a line to another point on the same line. The slope is often referred to as the **Rise** over the **Run**.

Rise: the difference in the ______ between two points on the same line, usually written as ______.

Run: the difference in the ______ between two points on the same line, usually written as ______.

Slope - Intercept Equation: $y = \mathbf{m}x + \mathbf{b}$

m is the _____ and b is the _____

Parallel lines have the same ______ and different

•

Perpendicular lines intersect at right angles and their slopes are _____.

The graph of a linear equation will be one of four possible lines: **Rising line:** line slants up from left to right on the graph. The slope is ALWAYS ______. IS a function.

Falling line: line slants down from left to right on the graph. The slope is ALWAYS ______. IS a function.

Horizontal line: line is straight across the graph from left to right, neither rising nor falling. The slope is ALWAYS ______. IS a function.

Vertical line: line is straight up and down the graph. The slope is ALWAYS _______. IS NOT a function!!

Point - Slope Equation Form: _____ = ____

function: a special case of mathematical statement where an ______ is matched to only one ______.

function notation: f(x) = ax + b *f* is the ______ of the function *x* tells us ______ for the variable ax + b (an expression, just like in Unit 1) tells us how to ______ the function for the given value. *x* is the ______, the calculated value of f(x) is the ______.

domain of a function: the set of all values that may be ______ to the function.

range of a function: the set of all of the possible values that will result
from ______ the function for an input. All the possible
______ of the function.
Table: a set of ordered pairs presented in tabular format; paired ______
and _____ listed as X and Y1 on the graphing calculator (Press [2nd]
[GRAPH]).

Input: the value typed in or ______ for x in the expression or function being evaluated.

Output: the ______ value, Y1 on the graphing calculator, of the expression or function using the input value.

Percent Change formula: To find the percent change between two values, divide the difference of the new (N) value and the previous (P) value by the previous value, then multiply times 100: %change = (N - P)/P * 100

Thickness formula: T = V/A volume (V, ALWAYS in _____ units)

area (A, ALWAYS in _____ units):

Slope formula: m = (-) / (-)

Distance formula: d =

Polya's Method: a structured approach to solving applications (word problems). has four steps: (1); (2); (3); (4)