Cartesian Coordinate System (aka \qquad) is a \qquad number line (the \qquad) intersecting with a \qquad number line (the___) at right angles at the zero coordinates of each line (the \qquad).

Quadrants are the \qquad areas of the Cartesian coordinate system formed by the intersecting number lines. Quadrants are designated by \qquad from \qquad to \qquad beginning in the upper right and proceeding \qquad .
\mathbf{x}-axis is the \qquad number line. From o to the \qquad is negative, from o to the \qquad is positive.
\mathbf{y}-axis is the \qquad number line. From o down is \qquad from o up is \qquad .

The Origin is the intersection of the two \qquad at their
\qquad , thus its coordinates are \qquad ,).

A Point is any location on the \qquad coordinate system. Every point has a \qquad and a \qquad component that establish its position on the coordinate plane in relation to the \qquad .

An Ordered Pair is the pair of coordinates that \qquad the location of a point on the coordinate plane in relation to the \qquad . The ordered pair gives the \qquad to the point from the \qquad . Ordered means that the \qquad -coordinate ALWAYS comes first and the
\qquad -coordinate ALWAYS comes second, separated by a \qquad .

The \mathbf{x}-coordinate gives the \qquad and \qquad of the point from the origin along the \qquad number line, the \qquad axis. The x-coordinate will ALWAYS be listed \qquad in an ordered pair.

The y-coordinate gives the \qquad and \qquad of the point from the origin along the \qquad number line, the \qquad axis. The y-coordinate will \qquad be listed second in an ordered pair.

Plot: to \qquad a point on the coordinate system starting at the
\qquad and using the ordered pair of coordinates, first \qquad then .
linear equation: an equation in one or more \qquad in which no exponent has a power other than \qquad . Called linear because the graph of a linear equation in two variables is a \qquad .

The Standard Form of a Linear equation in two variables is: \qquad $+$
\qquad = \qquad , where \qquad , \qquad , and \qquad are \qquad and \qquad and \qquad are \qquad in alphabetical order.

The Solution of a linear equation in two variables is the set of all
\qquad that satisfy (make a true statement of) the equation. When we try to graph all the \qquad , we will get a \qquad .

Three Methods to graph a line:

1. \qquad
2. \qquad
3. \qquad
The graph of a line: the representation of the \qquad of a linear equation in two variables on the coordinate system.

An ordered pair is on the line when its coordinates are a \qquad to the equation.

Intercepts: the point where the line crosses one of the \qquad . The of the intercept specifies which \qquad is crossed and which coordinate will probably have a value other than \qquad . The only time both coordinates are \qquad is when the line intercepts the
\qquad .

The \boldsymbol{x}-intercept is where the line crosses the \qquad -axis and has coordinates (\qquad , \qquad).

The \boldsymbol{y}-intercept is where the line crosses the \qquad axis and has coordinates (\qquad , \qquad).

Slope: We use the letter \underline{m} to represent slope because DeCartes is French. The slope tells us the RATE of Change between points on the same line. It also gives directions from a point on a line to another point on the same line. The slope is often referred to as the Rise over the Run.

Rise: the difference in the \qquad between two points on the same line, usually written as \qquad .

Run: the difference in the \qquad between two points on the same line, usually written as \qquad .

Slope - Intercept Equation: $y=m x+b$

m is the \qquad and b is the \qquad

Parallel lines have the same \qquad and different
\qquad .

Perpendicular lines intersect at right angles and their slopes are
 \qquad .

The graph of a linear equation will be one of four possible lines:
Rising line: line slants up from left to right on the graph. The slope is ALWAYS \qquad . IS a function.

Falling line: line slants down from left to right on the graph. The slope is ALWAYS \qquad . IS a function.

Horizontal line: line is straight across the graph from left to right, neither rising nor falling. The slope is ALWAYS \qquad . IS a function.

Vertical line: line is straight up and down the graph. The slope is ALWAYS \qquad . IS NOT a function!!

Point - Slope Equation Form: \qquad $=$ \qquad
function: a special case of mathematical statement where an
\qquad is matched to only one \qquad .
function notation: $f(x)=\mathrm{a} x+\mathrm{b}$
f is the \qquad of the function
x tells us \qquad for the variable
$\mathrm{ax}+\mathrm{b}$ (an expression, just like in Unit 1) tells us how to \qquad the function for the given value.
x is the \qquad ,
the calculated value of $f(x)$ is the \qquad .
domain of a function: the set of all values that may be \qquad to the function.
range of a function: the set of all of the possible values that will result from \qquad the function for an input. All the possible of the function.
Table: a set of ordered pairs presented in tabular format; paired \qquad and \qquad listed as X and Y 1 on the graphing calculator (Press [2nd] [GRAPH]).

Input: the value typed in or \qquad for x in the expression or function being evaluated.

Output: the \qquad value, Y1 on the graphing calculator, of the expression or function using the input value.

Percent Change formula: To find the percent change between two values, divide the difference of the new (N) value and the previous (P) value by the previous value, then multiply times 100: \%change $=(\mathrm{N}-\mathrm{P}) / \mathrm{P} * 100$

Thickness formula: $\mathrm{T}=\mathrm{V} / \mathrm{A}$
volume (V, ALWAYS in \qquad units)
area (A, ALWAYS in \qquad units):

Slope formula: $\mathrm{m}=(-\quad) /(-)$
Distance formula: $\mathrm{d}=$
Polya's Method: a structured approach to solving applications (word problems). has four steps:
(1) ; (2) ; (3) ; (4)

