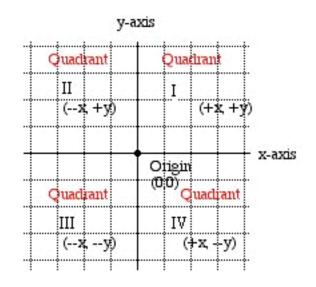
Cartesian Coordinate System (aka_1_) is a horizontal number line (the _2_-axis) intersecting with a vertical number line (the _3_-axis) at right angles at the zero coordinates of each line (the _4_).



Quadrants are the four areas of the Cartesian coordinate system formed by the <u>5</u> number lines. Quadrants are designated by <u>6</u> numerals from I to IV beginning in the upper right and proceeding counterclockwise.

x-axis is the ___7__ number line. From 0 to the left is ___8__, from 0 to the right is ___9__.

y-axis is the ___10__ number line. From 0 down is ___11__, from 0 up is ___12__.

The **Origin** is the intersection of the two ___13___ at their zeros, thus its coordinates are (__14a__,__14b__).

A **Point** is any __15__ on the Cartesian coordinate system. Every point has a __16__ and a __17__ component that establish its position on the coordinate plane in relation to the __18__.

An **Ordered Pair** is the pair of __19__ that specify the location of a __20__ on the coordinate plane in relation to the Origin. The ordered pair gives the __21__ to the point from the Origin. __22__ means that the x-coordinate ALWAYS comes first and the y-coordinate ALWAYS comes second, separated by a __23__: (x, y).

The **x-coordinate** gives the ___24__ and ___25__ of the point from the origin along the ___26__ number line, the x-axis. The x-coordinate will ALWAYS be listed ___27__ in an ordered pair.

The **y-coordinate** gives the distance and direction of the point from the origin along the ___28___ number line, the y-axis. The y-coordinate will ALWAYS be listed ___29___ in an ordered pair.

Plot: to locate a _____30___ on the coordinate system starting at the origin and using the ordered pair of _____31___, first x then y.

linear equation: an equation in one or more ____32___ in which no exponent has a power other than ____33___. Called <u>linear</u> because the graph of a linear equation in two

variables is a <u>34</u>.

The **Standard Form** of a Linear equation in two variables is: ax + by = c, where a, b, and c are ____35___ Numbers and x and y are ____36___ in ___37___ order. Ex: 3x - 2y = 18

The **Solution of a linear equation** in two variables is the set of all ___38a&b___ that satisfy (make a ___39___ statement of) the equation. When we try to graph all the ordered pairs, we will get a ___40___.

To graph a line: using one of three methods, establish two or more points on the line and draw the line through those points. Lines on the coordinate system are $__41_$ and extend to $__42_$ in both directions.

Three Methods to graph a line:

43 (aka the Pick Three method).
44 :
45 :

The graph of a line: the ____46___ of the solution set of a linear equation in two variables on the coordinate system.

An ordered pair is **on the line** when its coordinates are a ____47___ to the equation. To find out, ____48___ the x-coordinate for the variable ____49___ and the y-coordinate for the variable ___50___ and simplify. If the statement is true, then the point is on the line. This is the same as

Intercepts: the point where the line $_52_$ one of the axes. The name of the intercept specifies which axis is crossed and which coordinate will probably have a value other than 0. The only time both coordinates are $_53_$ is when the line intercepts the $_54_$.

The **x-intercept** is where the line crosses the __55__- axis and has coordinates ($_56a_$, $_56b_$). The name is the **x-intercept** so we are looking for a value for the __57__-coordinate and the y-coordinate is __58___0.

The **y-intercept** is where the line crosses the ___59__- axis and has coordinates (__59a_, __59b__). The name is the **y-intercept** so we are looking for a value for the ___60__- coordinate and the x-coordinate is ALWAYS ___61___.

Slope: the ____62___ in the y-coordinates between two points on the same line ____63___ by the change in the x-coordinates of the ____64___ two points. We use the letter \underline{m} to represent slope because it is ____64___.

The slope tells us the <u>65</u> of Change between points on the same line.

It also gives ____66___ from a point on a line to another point on the same line.

The slope is often referred to as the **Rise** over the **Run**.

Rise: the <u>67</u> in the y-coordinates between two points on the same line, usually written as $y_2 - y_1$.

Run: the <u>68</u> in the x-coordinates between two points on the same line, usually written as $x_2 - x_1$.

Slope - Intercept Equation: $y = ___69___x + ___70___$

Two lines graphed on the same set of axes will be **parallel**, **perpendicular**, or **neither**.

Parallel lines have the same ___75___ and different ___76___.

Perpendicular lines intersect at ____77___ angles and their slopes are ____78a____78b___ reciprocals (product is a negative 1)

If not parallel or perpendicular, then **neither**. This means the two equations could be graphed with the ___79___ line or their intersection does not form ___80__ angles.

The graph of a linear equation will be one of four possible lines:

Rising line: line slants ______ from left to right on the graph. The slope is ALWAYS ______82___. IS a function.

Falling line: line slants ____83___ from left to right on the graph. The slope is ALWAYS ____84___. IS a function.

Horizontal line: line is straight across the graph from left to right, neither rising nor falling. The slope is ALWAYS ____85___, or ____86___ slope. IS a function.

Vertical line: line is straight up and down the graph. The slope is ALWAYS ___87___ (see Division Involving Zero). ___88___ a function!!

Point - Slope Equation Form: $y - y_1 = m(x - x_1)$ or

 $y = \mathbf{m}(x - \mathbf{x}_1) + \mathbf{y}_1$

When we know the <u>89</u>, m, and the <u>90</u> of a point (x_1, y_1) , we can use the Point - Slope form to write the equation, usually in slope – intercept form (y = mx + b).

Input: the value typed in or used for ____91___ in the expression or function being ____92___.

Output: the <u>93</u> value, Y1 on the graphing calculator, of the expression or function using the input value.

function: a special case of mathematical statement where an ____94___ is matched to only one ____95___.

function notation: f(x) = ax + b*f* is the ____96___ of the function *x* tells us what value to $__{97}$ for the variable ax + b (an $__{98}$, just like in Unit 1) tells us how to calculate the value of the function ($__{99}$ the function for the given value)

x is the ___100___, the calculated value of *f*(*x*) is the ___101___.

domain of a function: the set of all values that may be ____102___ to the function. All the numbers that are ____103___ to be used for the input variable, usually *x*. All the numbers that are allowed to ____105___ *x*.

range of a function: the set of all of the possible values that will result from __106__ the function for an __107__. All the possible __109__ of the function. What we get when we replace *x* and evaluate to find __*110*__.