MATH 1000 Practice Vocabulary for Unit 3

Cartesian Coordinate System (aka__1__) is a horizontal number line (the __ $2 \ldots$-axis) intersecting with a vertical number line (the __3_-_-axis) at right angles at the zero coordinates of each line (the __ 4__).

Quadrants are the four areas of the Cartesian coordinate system formed by the \qquad number lines. Quadrants are designated by \qquad 6 \qquad numerals from I to IV beginning in the upper right and proceeding counterclockwise.
\mathbf{x}-axis is the __7__ number line. From o to the left is __ 8__, from o to the right is \qquad 9 .
\mathbf{y}-axis is the \qquad 10 \qquad number line. From o down is __11_, from o up is \qquad 12 \qquad .

The Origin is the intersection of the two \qquad 13 \qquad at their zeros, thus its coordinates are ($_14 \mathrm{a} _$,_14b_).

A Point is any __15__ on the Cartesian coordinate system. Every point has a \qquad 16 and a \qquad 17 component that establish its position on the coordinate plane in relation to the \qquad 18 \qquad .

An Ordered Pair is the pair of __19__ that specify the location of a __20__ on the coordinate plane in relation to the Origin. The ordered pair gives the __ 21 _ to the point from the Origin. __22__ means that the x-coordinate ALWAYS comes first and the y-coordinate ALWAYS comes second, separated by a __23__: (x, y).

The x-coordinate gives the ___24__ and ___25__ of the point from the origin along the $\quad 26$ __ number line, the x -axis. The x-coordinate will ALWAYS be listed __27__ in an ordered pair.

The \mathbf{y}-coordinate gives the distance and direction of the point from the origin along the __28__ number line, the y -axis. The y -coordinate will ALWAYS be listed __29__ in an ordered pair.

Plot: to locate a __30__ on the coordinate system starting at the origin and using the ordered pair of 31 \qquad , first x then y .
linear equation: an equation in one or more \qquad 32 \qquad in which no exponent has a power other than \qquad . Called linear because the graph of a linear equation in two
variables is a \qquad 34 \qquad .

The Standard Form of a Linear equation in two variables is: $\mathrm{ax}+\mathrm{b} y=\mathrm{c}$, where a, b, and c are $\ldots 35$ Numbers and x and y are __36__ in __37__ order. Ex: $3 x-2 y=18$

The Solution of a linear equation in two variables is the set of all __38a\&b __ that satisfy (make a _ _ $39 \ldots$ statement of) the equation. When we try to graph all the ordered pairs, we will get a \qquad 40 \qquad .

To graph a line: using one of three methods, establish two or more points on the line and draw the line through those points. Lines on the coordinate system are \qquad 41 \qquad and extend to __ 42 __ in both directions.

Three Methods to graph a line:

1. $\quad 43$ (aka the Pick Three method).
2. $\quad 44$:
3. -45 :

The graph of a line: the \qquad 46 \qquad of the solution set of a linear equation in two variables on the coordinate system.

An ordered pair is on the line when its coordinates are a 47 _ to the equation. To find out, __ 48 __ the $x-$ coordinate for the variable __49__ and the y-coordinate for the variable __ 50 __ and simplify. If the statement is true, then the point is on the line. This is the same as
\qquad to see if the numbers are solutions.

Intercepts: the point where the line __52__ one of the axes. The name of the intercept specifies which axis is crossed and which coordinate will probably have a value other than 0 . The only time both coordinates are \qquad is when the line intercepts the \qquad 54 \qquad .

The \boldsymbol{x}-intercept is where the line crosses the \qquad 55_axis and has coordinates ($56 a_{-}, \ldots 56 \mathrm{~b} _$). The name is the \boldsymbol{x}-intercept so we are looking for a value for the __57__-coordinate and the y-coordinate is _ 58_ o.

The \boldsymbol{y}-intercept is where the line crosses the \qquad 59 axis and has coordinates (_59a_,_59b_). The name is the \boldsymbol{y}-intercept so we are looking for a value for the __60__-coordinate and the x-coordinate is ALWAYS \qquad 61 \qquad .

Slope: the __62__ in the y-coordinates between two points on the same line __63__ by the change in the x coordinates of the __64__ two points. We use the letter m to represent slope because it is \qquad 64 \qquad .
The slope tells us the ___65_ of Change between points on the same line.
It also gives __66__ from a point on a line to another point on the same line.
The slope is often referred to as the Rise over the Run.

Rise: the __67__ in the y-coordinates between two points on the same line, usually written as $y_{2}-y_{1}$.

Run: the __68__ in the x-coordinates between two points on the same line, usually written as $x_{2}-x_{1}$.

Slope - Intercept Equation: $y=$ \qquad 69__ $x+$ \qquad 70 \qquad
> $\ldots \quad 71 _$is the __72__ and __73__ is the y-coordinate of the ___74__-intercept (o, b)

Two lines graphed on the same set of axes will be parallel, perpendicular, or neither.

Parallel lines have the same \qquad and different __76 \qquad .

Perpendicular lines intersect at __ $77 \ldots$ angles and their slopes are __78a__ $78 \mathrm{~b} _$_ reciprocals (product is a negative 1)

If not parallel or perpendicular, then neither. This means the two equations could be graphed with the __79__ line or their intersection does not form ___ 80 __ angles.

The graph of a linear equation will be one of four possible lines:
Rising line: line slants __ $81 \ldots$ from left to right on the graph. The slope is ALWAYS __82__. IS a function.

Falling line: line slants \qquad 83 \qquad from left to right on the graph. The slope is ALWAYS __ $84 \ldots$. IS a function.

Horizontal line: line is straight across the graph from left to right, neither rising nor falling. The slope is ALWAYS __85__, or __86__ slope. IS a function.

Vertical line: line is straight up and down the graph. The slope is ALWAYS __87__ (see Division Involving Zero). _ 88__ a function!!

Point - Slope Equation Form: $y-\mathrm{y}_{1}=\mathrm{m}\left(x-\mathrm{x}_{1}\right)$ or $y=m\left(x-\mathrm{x}_{1}\right)+\mathrm{y}_{1}$
When we know the __89_, m, and the __ $90 _$of a point ($\mathrm{x}_{1}, \mathrm{y}_{1}$), we can use the Point - Slope form to write the equation, usually in slope - intercept form ($y=m x+$ b).

Input: the value typed in or used for __ $91 _$in the expression or function being __92_.

Output: the \qquad 93_value, Y1 on the graphing calculator, of the expression or function using the input value.
function: a special case of mathematical statement where an \qquad is matched to only one \qquad .
function notation: $f(x)=\mathrm{a} x+\mathrm{b}$
f is the __ 96 __ of the function
x tells us what value to ___97__ for the variable $\mathrm{a} x+\mathrm{b}$ (an __98_, just like in Unit 1) tells us how to calculate the value of the function (__ $99 \ldots$ the function for the given value) x is the __ 100 _ , the calculated value of $f(x)$ is the
\qquad 101 \qquad .
domain of a function: the set of all values that may be __102__ to the function. All the numbers that are __103__ to be used for the input variable, usually x. All the numbers that are allowed to $\quad{ }_{1} 105 _\ldots$.
range of a function: the set of all of the possible values that will result from __106__ the function for an __107__. All the possible __109__ of the function. What we get when we replace x and evaluate to find \qquad 110 \qquad .

