Maximal Length Sequences

Maximal length sequences have the mathematical property of being “uniformly rough” in that they contain every possible combination (except one) of surface profile. This uniform roughness property makes MLS sequences useful for creating diffusers.  As we will see there is anther important property of these sequences that is used to measure room response. 

The MLS sequence is described by an order number N. The order number gives the number of elements whose permutations are contained in the sequence. For example the N=3 sequence contains every permutation of three binary levels. The length of the sequence before it repeats is (2^N)-1 elements. Thus, for N=3 the sequence length is 7.
I have written a short MATLAB routine, mlsxor.m, that calculates the MLS sequences for values of N that you specify at the command line. 

1. Type mlsxor at the command line and enter 3 for the sequence order. The sequence is contained in the variable x0.  Type 

>>x0

and confirm that all possible permutations of 3 bits are present in the sequence. Is the length what you expect?  Predict the length of the sequence for N=4. Generate the sequence using the program. Is the length correct? It’s tedious but you can confirm that all permutations of 4 bits are present.
2. Diffuser profile. The program mlsxor.m creates the ML sequence, x0, that alternates between -1 and +1. The program also creates x02 that is the same sequence but alternates between levels 0 and +1.  Type x0 and x02 to display the two sequences and confirm that they only differ by -1 becoming 0.  Type the command
>>bar(x02)

to see the profile of a diffuser of order N=4. Not really very impressive—the bar program leaves a space between the adjacent bars that would not be there in practice.
3. Two-dimensional diffuser profile.  The simple profile just diffracts sound in a cylindrical pattern—it does not diffract sound in the vertical direction.  It is possible to achieve a two dimensional pattern by forming the outer product of the profile with itself. I’ll walk you through the steps.
4. ML sequences are also used to make room response measurements.  They can take the impulse response of a room without ever creating a single loud impulse.  Sounds magical!  The key feature of the MLS measurement of the room response is that the correlation of an ML sequence with itself gives an impulse. We will create an ML sequence and form a convolution to show how and why an impulse results.  Then we will demonstrate how a MLS measurement could be used to demonstrate the comb filtering caused by a single strong reflection. We did this numerical simulation experiment earlier with clicks (i.e. impulses).  In this case we do not ever create a loud impulse but achieve a similar result.

Create a sequence for N=7

>>mlsxor

Input the order of the MLS sequence, N (Choose from N=3,4,5,6,7,9,10,11,15):7

x0 is the sequence.  Imagine this sequence is played as a sound through a speaker towards a microphone.  If the sound experiences a reflection off of a hard surface the microphone records both the direct sound and a delayed version of the sound reflected from the wall. We want to create a shifted version that represents the reflection but we also want to keep the original sound the same length (number of samples) as the delayed sound. We created the time shifted sound, x0s, by padding x0 to the left with eight 0’s. We have delayed the sound by 8 time steps.

>> x0s=[0 0 0 0 0 0 0 0 x0];
To make the direct sound the same length we pad at the end with eight 0’s. 
>> x01=[x0 0 0 0 0 0 0 0 0];
The combined sound that arrives at the microphone is just the sum of the direct and reflected sound.

>> x0c=x01+x0s;
To create out convolution “key” that will give us the impulse when convoluted with our original sequence we just create a reversed version of x0
>> key=reverse(x01);
If we convolve the key with our original sequence (with padded 0’s) we get the impulse response without any delayed reflection
>> ref=conv(key,x01);

>> plot(ref)
As expected this signal is just an impulse in the time domain—we call this signal ref (for reference).  What do you expect for the time signal with a reflection?
>> data=conv(key,x0c);

>> plot(data)
Is this plot what you expected? It should make sense.

Now we look at the signal in the frequency domain by taking FFT’s of out time signals.

>> fref=fft(ref);

>> fdata=fft(data);
You can look at plots of the fdata and fref and see that we get comb filtering.  We can get a prettier plot by dividing the fdata values by the fref values.
>> T=fdata./fref;
>>plot(abs(T))

