Structure, Morphology, and Magnetic Properties of Carbon Nanotube Alumina Nanocomposites

Frank Zoladz, Dr. Suman Neupane
Department of Physics and Astronomy

Abstract

Magnetic carbon nanotube (CNT)-alumina (Al$_2$O$_3$) nanocomposites have been synthesized by the chemical vapor deposition (CVD) process. X-ray diffraction studies show that the crystalline structure of alumina nanoparticles after the CVD process. Electron microscopy studies were carried to study the distribution of CNTs within the alumina matrix. The proportion of CNTs in alumina composites was determined by using thermogravimetric analysis. CNT-reinforced alumina nanocomposites demonstrated significant improvement of the magnetic properties as compared to pristine alumina powder. We observed strong ferromagnetic response as-synthesized composites upon incorporation of CNTs. Hence, CNTs can be employed to engineer novel ceramic composites with interesting mechanical properties.

Introduction

- Carbon nanotube (CNTs) can be visualized as multiple graphene sheets rolled into cylindrical structure. They exhibit outstanding mechanical, electrical, and thermal properties.
- Alumina (Al$_2$O$_3$) is a highly sought after ceramic due to its chemical stability, remarkable hardness, and refractory characteristics.
- The incorporation of thermally conductive CNTs with Al$_2$O$_3$ provides the thermal transport necessary to reduce material operating temperatures and improve thermal transport alongside enhanced magnetic properties.

Experimental Methods

- Carbon nanotube/ alumina nanocomposites were synthesized by chemical vapor deposition process in a tube furnace using cobalt as catalyst.
- As-synthesized nanocomposites were analyzed and their magnetic properties were measured at different temperatures.

Results and Discussion

X-Ray Diffraction Studies

- Vibrating sample magnetization measurements show that diamagnetic alumina nanopowder shows strongly enhanced ferromagnetic response upon the incorporation of CNTs with saturation magnetization of 1.06 emu/g. The Co(NO$_3$)$_3$/Al$_2$O$_3$ sample showed near zero coercivity, and the coercive field of nanocomposites increased significantly to 68 Oe when reinforced with CNTs. The saturation magnetization and remnant magnetization values also increased to 1.06 and 0.10 emu/g, respectively, for CNT/Al$_2$O$_3$ nanocomposites. This increase represents a 2500% improvement in the saturation magnetization of the CNT/Al$_2$O$_3$ nanocomposites.

Thermogravimetric Analysis

The sharp peaks on X-ray diffraction pattern confirms the crystallinity of as-prepared nanocomposites.

Magnetization Measurement

Acknowledgments

We acknowledge the financial support from Faculty Research and Creative Activity Award (FRCAC) and startup funds at Middle Tennessee State University. SN also acknowledges MTSU Interdisciplinary Microanalysis and Imaging Center (MIMIC) and Ms. Joyce Miller for electron microscopy.

Conclusions

We have successfully described the enhancement of the magnetic properties of alumina nanoparticles. The nanocomposite containing CNTs dispersed in the alumina matrix has been synthesized by chemical vapor deposition process. XRD analysis confirmed the crystallinity of as-synthesized nanocomposites, whereas, electron microscopy studies showed the presence of multivalled CNTs facilitated by the catalyst particles. The composite contains ~10% CNTs, as confirmed by the thermogravimetric analysis. Magnetic measurements revealed the dramatic enhancement of magnetic properties of CNT/Al$_2$O$_3$ as compared to pristine Al$_2$O$_3$ powders. The saturation magnetization of alumina nanopowder increased by ~2500% upon incorporation of CNTs. We anticipate that our work can provide an alternative approach to prepare composites with enhanced magnetic properties. Moreover, the presence of conducting CNTs in alumina enables the fabrication of electrochemical sensors which can withstand harsh chemical conditions.

References