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Apstract

Deducing whether a tweet is a rumor or actual news is paramount in emergency situations. As soon as a Twitter user sends a tweet, their entire network becomes aware of what they
said. Users have no clear way of knowing if a received tweet is truthful. Researchers have found key features within a tweet that are linked to credibility and are derived from both the
textual content and author's profile. However, these features do not account for the specialty of the author. In crisis scenarios, few people have access to up-to-date information. By use

of web scraping, we pull job information about authors of tweets from verified accounts. We then assign a similarity score based on their job compared to those that would be privy to

current state of events. This similarity score increased average accuracy by 1% and bolstered precision, recall and F1 measure in all cases but one.

Methodology

Introduction

Rapid proliferation of news is an integral part of our society.
We all carry devices linking us to the rest of the world with the
click of a button. In an emergency situation, we can rest
assured that we will get information and help almost instantly.
This is both a blessing and a curse. Misinformation can spread
along with these bursts of news. Methods have been built
across the realm of Natural Language Processing (NLP) to
deduce when events are happening by using social media via
interfaces know as Application Programming Interfaces(API).
These interfaces allow researchers to capture data from all over
the world during these key moments. Said researchers have
had success in determining when an event triggers. They are
even able to determine which tweets about the event were
credible and which ones weren't. Unfortunately this analysis
often happens after the event is over, sometimes hours after
the event truly happened.

In the case of real-time emergency events such as a shooting,
a fire, or an earthquake, there is not time to wait around and
determine validity. It needs to happen in the moment. |
propose augmenting current rumor detection feature sets
with a factor for the author's specialty. As these situations
happen incredibly fast, credible information will only be
available to a select group of people closely related to the
event, such as first responders and journalists. While the event
unfolds, information provided by those in the know will be
passed around from user to user and changed in minor ways.
Without news stories to fact check tweets, we must instead
look to the likelihood that an author is part of those
responding to the event. To pursue this research | will focus on
a single social network, Twitter.

Twitter Application Programming Interface (API)

Twitter provides researchers with the ability to harvest tweets
using various methods within their API. These methods can be
direct, by use of an ID specific to a tweet, or by listening to the
stream of tweets being posted within a specific location. In
both cases, twitter provides all the details related to a tweet, as
well as information about it's author.

PHEME Dataset

Data set provided by Zubiaga et al [10] that contains
annotated tweets. Each tweet is labeled as either a rumor or a
non rumor. Within this dataset, there are tweets pertaining to
five emergency events.

Beautiful Soup

Python library that can be used for parsing data from websites
iNn @ process known as web-scraping. It provides functions for
easily navigating HTML tags to make extracting information
quick and easy.

Author Information Extraction

To ensure that we can find user profession information, we limited
our dataset to only those tweets from verified accounts. As Twitter
only verifies accounts of celebrities or those with massive
followings, we deemed it a reasonable assumption that they
would have a Wikipedia page. From these Wikipedia pages, we
are able to pull information related to each author.

Using BeautifulSoup, we extracted the entirety of each Wikipedia
page. We were then able to parse out the information we needed.
Each page has a block containing summary information from the
page. These blocks were our primary target for extraction. We
used the text from the rest of the page to determine what words
were most common using a Bag Of Words approach. The ten
most common words were selected and added into our parsing
result. As a final source, we used pattern matching on the first
sentence, looking for common phrases such as “is a” and “was a” in
order to deduce occupation.

Tweet Parsing

Each tweet was parsed and features related to the user were
extracted for use in a Naive Bayes Classifier. These features can be
seen below and mirror those features used by Vijeev et al [9].

feawre ————loesrption

Listed Count Number of list a Twitter user is a part of

Average Number of Posts Number of posts a user has made divided
by their account age in years

Geo-Locations Enabled Does the user have Geo-Location Services
enabled?
Account Age Ages in years of the user's account

Job Description Dataset

In order to build our similarity rating, we first needed to find text
related to each job. We did this by using a corpus of job
descriptions pulled from dot-job-descriptions.careerplanner.com
[1]. Using Word2Vec's vector similarity tools, we compared job
descriptions against a list of jobs we believed to have knowledge
of up to date information. The highest rated jobs were then
selected and used as vectors for comparison against an author’s
profession vector.

Word2Vec Similarity Ranking

Using the job descriptions and author information found above,
we then built a similarity rating for each tweet. This rating was
created by comparing our key words vectors and occupation
vectors for each author against the related job vectors. For each
author, we selected whichever comparison had yielded the
highest similarity between the key words and occupation vectors.
This rating was then added into our feature set listed above and
ran through the classifier. The classifier was ran for 200 iterations
and used a 75%/25% data split for training and testing. Results
were averaged for each iteration. The same process was ran
against the base feature set to get a baseline for results.

Results

Parsing information off of Wikipedia through the page’'s HTML
proved to be difficult. As their website is not coded consistently,
searching for items based on class hames was not possible. This
was coupled with issues finding proper pages for an individual
when there were multiple pages for the same name.

Deducing job description vectors that were related to the jobs
within our related list worked exceptionally well. Of the top 50
jobs we would select, there would only be one or two that had
no relation to some form of first responder.

Similarity ranking was made difficult due to our restricted
vocabulary for Word2Vec. This caused many of our job
description vectors to be reduced greatly to contain only words
in the vocab. This was exacerbated further by limiting our list of
jobs to only those known by the vocabulary for comparison.

Despite these challenges, our similarity rating boosted the
classifiers in every measure except one. We observed increase in
the precision, recall and F1 measure for both our classifications.
Our accuracy, only slightly out performed the base feature set
with regards to average and maximum.
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After each iteration, we retrieved the top three most informative
features from the classifier. We found that our similarity ratings
accounted for roughly 58% of these features.
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Conclusions

Our approach to parsing Wikipedia information requires
refinement. We encountered many issues with the html
parsing. This could be remedied by using one of the Wikipedia
APIs to pull a page directly. This would ensure we do not have
to parse it ourselves.

Deducing related job descriptions worked quite well. The only
modification to this section of the system is to build a method
of dynamically determining what jobs are related to the event
at hand. This in turn, would also require a process for
classifying what event type a tweet is about at runtime.

Word2Vec similarity ranking performed adequately for our
needs. In further research, it will be beneficial on all fronts to
use a more verbose vocabulary. As we used the pruned
vocabulary provided by NLTK (Natural Language Toolkit), many
words from our job and author vectors had to be removed.
Fixing this will bolster Word2Vec's ability to judge similarity.

All things considered, our slight success demonstrates that
there can be improvement gains from using new author
related features. By making the above corrections and adding
iNn text based features, | anticipate our system can achieve
greater results.

In a world of constant social interaction, it is imperative that
we determine as quick as possible when a rumor is spreading
online. | hope to have highlighted this need to my fellow
students at MTSU and encourage them to press this issue.
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