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Introduction

Recently, the rate of data collection at an ever-increasing pace and advanced computing power have
led to the huge interest on data-driven system. And the invaluable features of deep neural network,
which is composed of multiple layers, allow the computational models to learn representations of
data. In this work, we will present deep neural networks with different architecture to approximate

the unknown governing equations by suing observed data. In addition, we use the glycolytic oscillator

as the main example.

Setup

Let ‘s consider nonlinear dynamical system

d
&) = f(2(t)),

where z(t) € R” are the state of system at time t and the governing function f describes the evolution

of system. The goal is to create a neural network model for governing function by utilizing data of the
solution trajectories. We used the ode solver, which is python odeint(), to collect the data by given
initial conditions. Here, a general form of a linear multistep method with M steps to ode is applied.
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Different alpha and beta will result in different schemes. In the neural network , we could use this
equation to learn the parameters by minimizing the mean squared error loss function.
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Glycolytic Oscillator

Fuel processes are necessary for cells to grow, reproduce and respond to environment. In cells, the
energy-rich molecule adenosine triphosphate (ATP) is used as a direct energy source and the purpose
of energy metabolism is to produce ATP through the conversion of an indirect energy source such as
a glucose molecule.

The first part of energy metabolism is called glycolysis and in this process glucose molecules are
converted into pyruvate through a number of enzymatic reactions. For each glucose molecule
converted, two adenosine diphosphate (ADP) molecules are phosphorylated to two ATP molecules
and two nicotinamide adenine dinucleotide (NAD+) molecules are reduced to two NADH molecules.
the simplified schematic of energy metabolism in yeast. If yeast cells are exposed to certain
concentrations of glucose and cyanide, the concentration of metabolites in glycolysis starts to
oscillate.
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The Model

Reaction scheme for the glycolytic model showing the main reactions of anaerobic
glycolysis in a yeast cell together with the influx and outflux of glucose and
pyruvateyacetaldehyde, respectively.

@ Jy is input of glucose via the cellular membrane

@ J is the membrane transport of the coupling substance, which is is the net
flux of pyruvatey/acetaldehyde out of the cell

@ v; is the reaction velocity of the combined reactions of hexokinase,
phosphoglucoisomerase and PFK

@ v, is the velocity of the glyceraldehyde-3-phosphate dehydrogenase reaction

v3 iIs the velocity of the combined reaction of phosphoglycerate kinase,
phosphoglycerate mutase, enolase and pyruvate kinase

v4 is the velocity of the alcohol dehydrogenase reaction

v Is the velocity of nonglycolytic ATP-consumption

Ve Is the velocity for forming glycerol from triose phosphates

v7 is the degradation of extracellular pyruvatey/acetaldehyde

@ A3 and A, denote the concentrations of ATP and ADP
@ N; and N, denote the concentrations of NAD™ and NADH

Because several glycolytic reactions are omitted and that other reactions are
lumped, the model variables denote, in some cases, the concectrations of pools of
Intermediates rather than concentrations of individual compunds.

@ S;: concentration of glucose

@ 5,: concentrations of pool of the triose phosphates, glyceraldehyde
3-phosphate and dihydroxyacetone phosphate

@ S3: concentrations of 1,3-bisphosphoglycerate
@ S4: concentrations of pool of pyruvate and acetaldehyde
o 5;%: concentrations of the coupling substance in the external solution

The model is based on the following set of rate equations:
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The differential equation for N; and A, are omitted, because these concentrations
follow the conservation conditions:

Ny + N, = N = constant
A, + A3 = A = constant
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Results

Here, the data are collected from t=0 to t=25 with a time-step size 0.01. And we used
a neural network with one hidden layer and 256 neurons to represent the nonlinear
system.
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Exact dynamics versus learned dynamics the given initial conditions from the
following two tables. The parameter values in table 1 have been selected in such a
way that the metabolite concentrations are in a realistic range for yeast cells.

Table 1 Parameter values of the reference state

Table 2

Parameter Value i ; o
Initial concentrations for reference state oscillations

3.0 mM- minf‘ Compound Concentration (mM)
100.0 mM~"- min~"!

40 mM
0.1
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ky 16.0 mM~"-min~" Glyceraldehyde-3-P/dihydroxyacetone-P 0.193
f, 100.0 mM~" - min”" 1,3-Bisphosphoglycerate 0.050
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