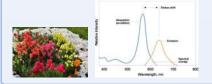
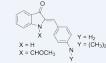


Exploration of Aza-aurone, Thioaurone and Triazole Systems for Fluorescence in Bio-imaging Koda Hengstenberg, Dr. Scott Handy Middle Tennessee State University


Compounds of Study

Fluorescence has attracted much attention because of its advantages over other biological imaging techniques. The fluorescence properties of a chemical can make for effective imaging and identification of useful molecules in a cell. Aurones are a strongly colored family of flavonoids that have been shown to be very fluorescent.

How do aurones fluoresce?


Fluorescence occurs when a molecule relaxes after an excitation of some energy (λ). While it relaxes, the molecule emits another wavelength. This emission is fluorescence.

Objective Identify a fluorescent aurone probe capable of utilization in aqueous environments (inside a cell), while characterizing aurone subgroups for further application. With aurones being brightly colored, there is a possible use of tagging aurones to molecules in a cell to identify concentration or presence of metabolites, proteins, antibodies, etc.

Azaaurones

The aza- family of aurones offer multiple Sites of addition wherein acetyl groups, as well as a dimethyl group, can be implemented.

Variation in structure while maintaining the aromaticity is crucial and is proposed to enable photo-identification based on chemical profile.

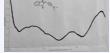
Thioaurones

Thioaurones vary In structure from aurones due to the Sulphur group. This addition has potential effect on the overall photo-properties due to the electron withdrawing capabilities. Sulphur also aids in a means of addition of multiple =O groups, which may lead to changes in fluorescence.

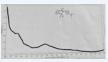
Differences between π electron overlap of Sulphur compared to Oxygen may hinder aromaticity slightly.

Aurone Triazoles

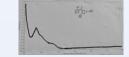
X = O


 $X = O_{2}$

Like azaaurones, aurone triazoles are a nitrogen based species of aurones in which the integrity of the aurone base is impacted without breaking the aromatic nature of the compound. Addition of aromatic groups in the N-2 and C-4 positions were tested to determine if location of aromatic group/electron clustering would Impact the photo-properties.


> Ar = Phenol Ar = Dimethylamino

Conclusion On completion of all tests. It was determined that:


Azaaurones - Showed a great amount of Uv/Vis activity, but were only slightly fluorescent

Thioaurones - UV/Vis activity was poor. In addition, thioaurones were shown to be weakly fluorescent.

Aurone Triazoles - Displayed greater amounts of UV/Vis activity, but were not strongly fluorescent; against predicted values.

References

Petermayer, Christian, and Henry Dube. "Indigoid Photoswitches: Visible Light Responsive Molecular Tools." Accounts of Chemical Research. 2018, 1153-1163.

Lai, Qi, et al. "Rational Design and Synthesis of Yellow-Light Emitting Triazole Fluorophores with AlE and Mechanochromic Properties." *Chemical Communications*, The Royal Society of Chemistry, 7 Mar. 2019, 4603–4606.

Staff, Bioradiations. "Tips to Make Fluorophore Picking Easier." Bioradiations, 6 Nov. 2018,

Methods

After synthesis of all compounds, measurements of fluorescence followed by UV/Vis properties were taken. Fluorescence and UV/Vis was tested using a 1 μ M aliquots on fluorometer and spectrophotometer respectively.