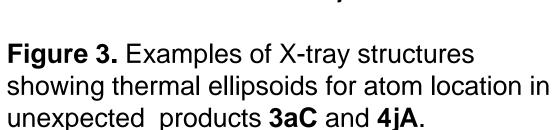

STATE UNIVERSITY



Series 3 and 4 are side reactions that occur are major product in some examples. For example, **1a** forms **3aA**, **3aB** or **3aC** when heated in ethanol or water with **A**, **B**, or **C**. Similarly, **1j** reacts with **A**, **B**, or **C** to form the **4j** derivative. See X-ray structures below for examples.

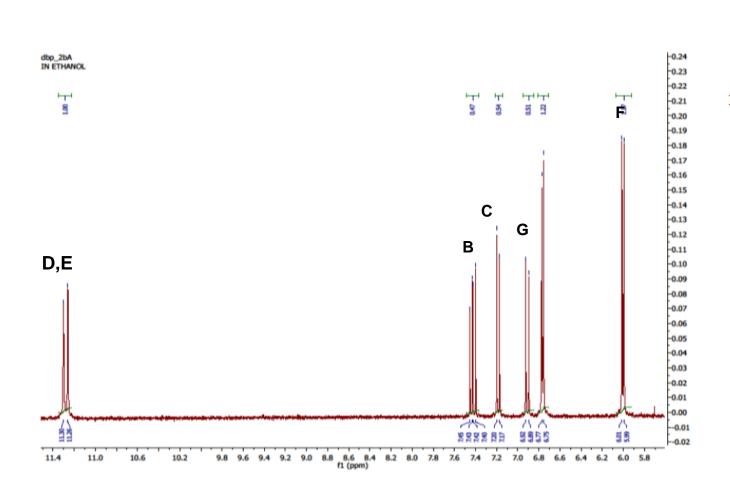
X-ray Structures for Examples of 3 and 4

Series **3** was reported previously when a large excess of thiobarbituric acid used with electron deficient benzaldehydes ($G = CN, NO_2, H$).⁹ The intramolecular rearrangement of dialkylaminobenzenes to form spirolinkages to active methylene acceptors is well known¹⁰ and our X-rays structure of **4jA** demonstrates a new example occurs as the only product of **1** and **A**.

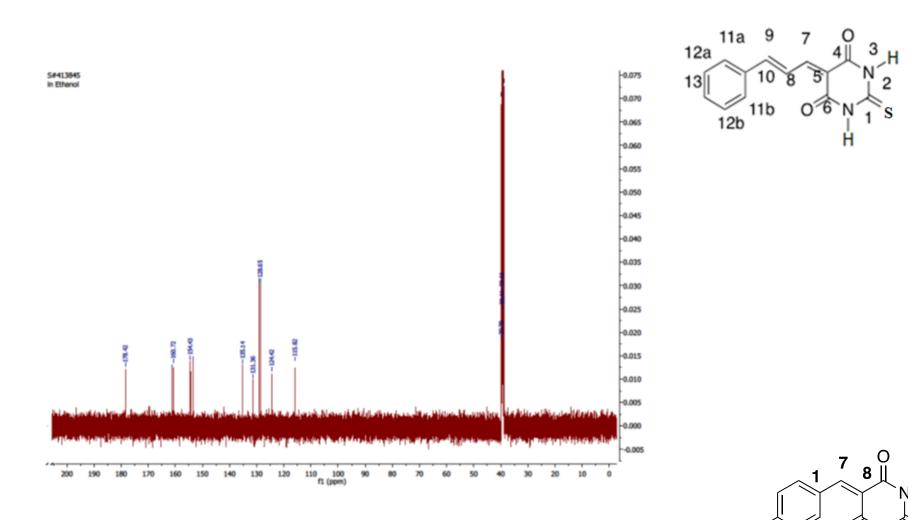
NMR & X-RAY Correlations WITH AROMATIC DONORS AND THIO(BARBITURIC) ACID ACCEPTORS

Darshit B. Patel, Oleksander Hietsoi, Gabriel T. Gwirtsman, and Andrienne C. Friedli Department of Chemistry, Middle Tennessee State University

EXPERIMENTAL METHODS


Materials. Compounds were synthesized according to a three step method² described for julolidine in the companion poster.

Nuclear Magnetic Resonance Spectroscopy. ¹H NMR analysis was run on a JEOL ECM 500 NMR using DMSO- d_6 , \and referenced to the residual protons. ¹³C NMR analysis was run on a JEOL ECM 500 NMR (10,000 scans). 2-D methods literature and MestreNova were used to determine ¹H -¹³C chemical shifts and coupling constants.


Calculations. NMR spectra were qualitatively modeled with ChemDraw Professional 16.0 (an empirical program that sums contributions to fragments). They were also modeled with using Gaussian 09 (B3LYP) using DMSO solvent.

¹H NMR

¹H NMR chemical shifts of protons A-G assigned using ¹H NMR spectra, literature,⁵ and ChemDraw (Chem Office).

Figure 4. ¹H NMR of **2aA** with vinyl with $\delta = 6-8$ ppm expanded

Figure 5. (¹³ C) for 2aA.

Table 1. Key peaks that indicate **1**, **3** and **4** series.

Compound	C7	C8
1bA	111.4	154.6
3aA	33.5	96.1
4jA	37.8	55.6

12b 11b 0 6 N 1 s

3aA

6 1 7 0 H N 8 0 H

¹³C NMR

¹³C spectra easily distinguish series 1,3, and 4, as Illustrated in Table 1.

Table 2. ¹³C NMR Chemical Shifts of carbons 1-16 assigned using ¹³C NMR spectra, literature,⁴ and ChemDraw (Chem Office).

	$cA(R_3 = $			1hA ($R_1 = R_3 = R4 = $
	$\mathbf{CA}(\mathbf{N}_3 = $	1fA (R ₁ =R ₃	1gA $(R_1 = R_3 = R_5)$	OMe)
/le2)	OMe)	= OMe)	= OMe)	
0.37 ^	125.22	114.59	106.24	113.01
9.6 ²	137.88	160.11	159.05	157.3
1.38 ′	114.04	97.59	90.77	96.21
6.09 ^	155.90	162.64	160.88	159.3
1.38 ′	114.45	106.38	90.77	149.47
9.6 [^]	137.88	136.01	159.05	113.19
9.26	115.55	114.59	117.65	115.92
4.67 [^]	155.90	159.54	146.78	141.71
0.32 ^	163.91	166.76	165.33	160.26
7.42	178.21	178.38	178.27	178
2.89 ´	164.51	166.76	165.33	162.61
	0.37 39.6 1.38 6.09 1.38 39.6 9.26 4.67 0.32 7.42	0.37125.2239.6137.881.38114.046.09155.901.38114.4539.6137.889.26115.554.67155.900.32163.917.42178.21	0.37125.22114.599.6137.88160.111.38114.0497.596.09155.90162.641.38114.45106.389.6137.88136.019.26115.55114.594.67155.90159.540.32163.91166.767.42178.21178.38	0.37125.22114.59106.2439.6137.88160.11159.051.38114.0497.5990.776.09155.90162.64160.881.38114.45106.3890.7739.6137.88136.01159.059.26115.55114.59117.654.67155.90159.54146.780.32163.91166.76165.337.42178.21178.38178.27

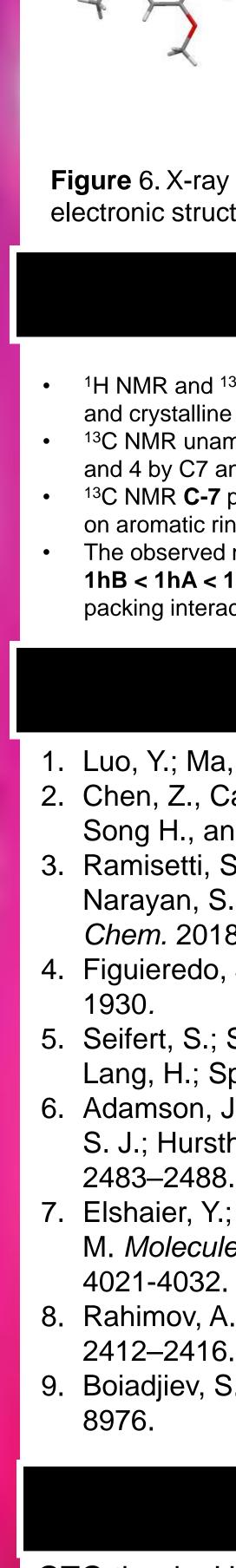

X-Ray Structures

 Table 3. Comparison of relevant X-ray bond
lengths and angles in **1fA**, **1fC**, **1gA**, **1hA**, 1hB, and 1hC.

						J. J
Bond	1fA	1fC	1gA	1hA	1hB	1hC
C1-C2	1.437	1.432	1.420	1.422	1.422	1.431
C2-C3	1.382	1.382	1.384	1.391	1.383	1.394
C3-C4	1.390	1.398	1.399	1.387	1.391	1.388
C4-C5	1.413	1.399	1.391	1.415	1.416	1.421
C5-C6	1.374	1.383	1.390	1.370	1.369	1.374
C6-C1	1.423	1.407	1.418	1.430	1.422	1.416
C1-C7	1.429	1.436	1.435	1.423	1.432	1.426
C7-C8	1.376	1.371	1.360	1.383	1.380	1.386
C8-C9	1.480	1.474	1.473	1.471	1.469	1.470
C8-11	1.449	1.461	1.427	1.468	1.465	1.449
BLA						
Single*	1.427	1.431	1.424	1.424	1.425	1.423
double	1.399	1.371	1.388	1.405	1.400	1.404
D (x 10 ²)	2.8	6.0	3.6	1.9	2.5	1.9
Angles						
Twist	0	28.83	42.91	16.69	4.27	2.96
C1-C7-C8	138.47	135.9	130.54	136.56	137.11	138.48
H-bonding						
2-OMe-H7	2.149	2.249	2.419	2.237	2.215	2.152
O2-H7	2.237	2.278	2.404	2.309	2.262	2.230
O1-C6	2.131	2.224	n/a	2.116	2.030	2.081
N2H-C2	n/a	n/a	2.042	1.998	2.020	n/a
N2H'-C2'	n/a	n/a	1.994	1.989	2.006	n/a
packing		N-Et trans				N-Et <i>cis</i>

^a BLA Included bonds between C8 and C9, C11. ^b Planes are defined by C2-C1-C7 and C7-C8-C11

Planar molecules would be expected to be more conjugated, and have less bond length alternation (BLA, difference between single and double bonds). The compounds in Table 1 exhibit twist angles from planarity in the order: 1fA (q= 0°) < 1hC < 1hB < 1hA < 1fE < 1gA. The twist angle is defined as the angle between planes containing C2-C1-C7 and C11-C8-C7 and corresponds to BLA.

MIDDLE TENNESSEE STATE UNIVERSITY

X-Ray Analysis

The most conjugated compounds (BLA = 1.9) are the ones with the strongest donor (1hA and 1hC). 1hB is less conjugated because it has a weaker acceptor. According to this analysis, 1fC would be expected to have a similar BLA to 1fA. However, in **1fC**, the N-Et groups interrupt packing and force the molecule to twist, decreasing BLA and increasing distances of H-bonding interactions. As expected, **1gA** is the most highly twisted structure due to the 2, 6-dimethoxy substitution pattern that decreases the C1-C7-C8 bond angle and distances between H-bonding interactions.

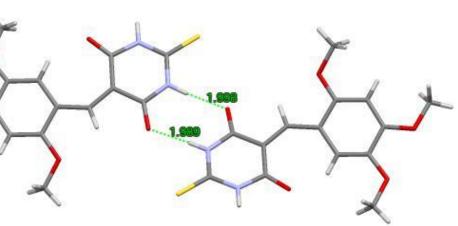


Figure 6. X-ray structures of **1hA** (left) and **1hC**, which have similar electronic structures, but steric differences (see Table 3)

Conclusions

¹H NMR and ¹³C NMR, and X-ray analysis were used to characterize soluble and crystalline derivatives 1, 2, 3, and 4.

¹³C NMR unambiguously indentifies desired series vs. side product series 3 and 4 by C7 and C8 chemical shifts.

¹³C NMR **C-7** ppm values increase as the number of donating groups increase on aromatic ring.

The observed molecular torsional angle increases in the series **1fA <1hC < 1hB < 1hA < 1fE < 1gA**, presumably due to a combination of stabilizing packing interactions and degree of conjugation in the molecules.

References

1. Luo, Y.; Ma, et al. J. Med. Chem. 2010, 53, 273–281.

2. Chen, Z., Cai, D., Mou, D., Yan, Q., Sun, Y., Pan, W., Wan, Y., Song H., and Yi, W. *Bioorg. Med. Chem.* 2014, 22, 3279-3284. 3. Ramisetti, S. R.; Pandey, M. K.; Lee, S. Y.; Karelia, D.; Narayan, S.; Amin, S.; Sharma, A. K. Eur. J. Med.

Chem. 2018, 143, 820.

4. Figuieredo, J, et al. Eur. J. Med. Chem. 2018, 143, 1919-

5. Seifert, S.; Seifert, A.; Brunklaus, G.; Hofman, K.; Ruffer, T.; Lang, H.; Spange, S. New J. Chem. 2012, 36, 674–684.

6. Adamson, J.; Coe, B. J.; Grassam, H. L.; Jeffery, J. C.; Coles, S. J.; Hursthouse, M. B. J. Chem. Soc., Perkin Trans. 1999,

7. Elshaier, Y.; Barakat, A.; Al-Qahtany, B.; Al-Majid, A.; Al-Agamy, M. Molecules 2016, 21, 1337. Palasz, A. Synthesis, 2010, 23, 4021-4032.

8. Rahimov, A. I.; Avdeev, S. A. Russian J. Gen. Chem. 2009, 79, 2412-2416.

9. Boiadjiev, S. E.; Lightner, D. A. *Tetrahedron* 2007, 63, 8962–

Acknowledgements

GTG thanks URECA for funding. DBP thanks TBR SERS program for funding.