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Data science is steadily spanning into the field of software 

engineering. This research compares and evaluates the Microsoft 

ML.NET library to utilize machine learning in C#. In this project, we 

compare accuracy and runtime of a machine learning algorithm in C# 

with another in Python utilizing transfer learning to determine the 

effectiveness of ML.NET library. Both approaches will utilize the 

same architectures (Resnet-101, Inception-v3, and MobileNet) for 

each individual test. The task for each test is image recognition on 

two datasets comprised of vehicle images. Due to the data streaming 

abilities provided by the ML.NET library, we achieved faster runtime 

with the C# implementation while maintaining similar accuracy in 

both Python and C# implementations.

ABSTRACT

INTRODUCTION

In order to evaluate the effectiveness of a convolutional neural network developed in C#, we utilized two machine learning libraries. For our Python 

implementation, we used the Keras Library. This library allows us to utilize transfer learning. For our C# implementation, we used Microsoft’s ML.NET 

Library which utilizes transfer learning for its image classification algorithms. These libraries allow us to import the pretrained Resnet-101, Inception-

v3, and MobileNet models. When ML.NET performs image classification, it obscures its image transformations [12] and then runs the transformed 

input features through the transferred architecture one time. This one time pass through the transferred architecture is known as the bottleneck phase 

[8]. This bottleneck phase can be similarly recreated within Python using Keras. Because ML.NET obscures its image transformations, we were 

unable to exactly reproduce the image transformations in Python. For simplicity, we decided to opt for the architecture preferred sizing and scaling of 

the images in Python. 

We started by creating three C# programs differing only by the architecture used (Resnet-101, Inception-v3, and MobileNet) with the aforementioned, 

bottleneck design and image transformations. This step was repeated for the Python implementations. We set the batch size to 10, the number of 

epochs to 30, and the learning rate to 0.01 for all implementations. The training data was 70% of the total number images and the remaining 30% was 

the validation data. The images used in this evaluation consisted of three categories of vehicle damage: minor, moderate, and severe. The total 

number of images was 1,150. We ran each program three times on an Intel Core i7-3770K CPU @ 3.5GHz with 16 gigabytes of main memory; these 

algorithms did not utilize GPU resources. Validation accuracy and runtime was logged and analyzed after each run. 

METHODS

In terms of validation accuracy, we found that Python was consistently superior shown in Fig. 01, Fig. 02, and Fig. 03. For the Python Inception-v3 

implementation, validation accuracy averaged .659 in its best run while the C# inception-v3 implementation’s best run yielded .635. The results for the 

MobileNet architecture were similar with the Python implementation yielding average validation accuracy of .671 while the C# implementation yielded 

.642. Lastly, the Python and C# Resnet-101 implementations shared the most similar validation accuracies with the Python Implementation averaging 

.664 and the C# implementation averaging .657. 

While validation accuracy is a good indication of the model’s ability to learn, we did not neglect to consider the models runtime. We found the most 

significant differences between the C# and Python implementations was the runtime. It can be shown in Fig. 04, Fig. 05, and Fig. 06 that the C# 

implementation is vastly superior for all architectures in terms of runtime. For the C# Inception-v3 implementation, the best runtime was 2 minutes 

and 43 seconds while the Python implementation was 4 minutes and 31 seconds. This trend continued with the C# Resnet-101 implementation 

yielding its best runtime at 6 minutes and 41 seconds while the Python implementation yielded 9 minutes and 53 seconds. The C# MobileNet

implementation yielded a runtime of 42 seconds while the Python implementation yielded 4 minutes and 41 seconds. 

RESULTS

BACKGROUND

Liu, T. et al evaluated transfer learning to determine if it is a suitable 

approach to reduce training time while achieving satisfiable accuracy. 

The authors found that transfer learning is a satisfiable solution for 

most scenarios. The authors suggest that transfer learning could 

reduce the likelihood of overfitting [5]. Ahmed, Z. and others at 

Microsoft utilizes the strategy of transfer learning to bring DNN into 

their Microsoft ecosystem. For image recognition algorithms, ML.NET 

offers Resnet-101, Inception-v3, and MobileNet architectures. 

Microsoft has been utilizing the ideas of ML.NET for the last decade 

with their data scientists [1]. Ahmed, Z. et al compare ML.NET library 

against Sklearn (Python machine learning library) and H2O with 

classification and regression problems, in which the authors 

acknowledge the absence of DNN problems in this paper. The results 

showed ML.NET was superior in terms of CPU efficiency, and 

runtime [1]. One of the major contributions this paper offers is the 

concept of DataView, which allows ML.NET to consume data too 

large to store in main memory [1]. Kostelansky, E. et al have utilized 

the ML.NET library to estimate a train’s travel time. The authors of 

this paper mention the advantages of using the ML.NET library for 

their application; however, the authors mention ML.NET lacks the 

tools necessary for data analysis [4]. 

Software engineering and data science are interwoven fields that are 

becoming disjoint. Because of this, software engineers may be less 

inclined to utilize machine learning for many of their applications. 

One could argue that this is caused by the extensive machine 

learning libraries offered in Python that are not offered in other 

programming languages [1]. For software engineers working in the 

.NET ecosystem, machine learning is more feasible now with the 

inception of ML.NET. 
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Machine learning can be difficult to integrate into many existing 

applications, as many software engineers are working in industries 

with specific tool stacks. With Python dominating the field of data 

science, other languages like C# have become less popular in the 

field of data science. Efforts have been made to extend the 

interoperability of C# with libraries like TensorFlow. For software 

engineers that specialize in Microsoft’s .NET framework and 

companies that employ many applications utilizing this framework, 

Microsoft has developed a library called ML.NET that bridges the gap 

[1]. As the popularity of machine learning increases, questions 

surrounding the choice of framework that is being used have arisen. 

While Python is the most commonly utilized language, the 

effectiveness of others, like C#, have yet to be extensively explored 

in machine learning.

Building a deep neural network (DNN) is a computationally heavy 

process that is often aided with the use of the TensorFlow library for 

Python [7]. With DNN’s being a computationally heavy process, time 

spent training the network can become a significant constraint for 

many software engineers. This can be aided with the use of transfer 

learning. Transfer learning is the process of taking a pretrained 

network and using it as the building block for a similar domain of data 

[5]. Utilizing weights from a pretrained network has shown to be an 

effective strategy for improving the training time on many DNN 

scenarios. ML.NET offers the ability of utilizing transfer learning to 

accomplish a variety of DNN applications [1]. ML.NET offers four 

popular DNN architectures for image recognition: Resnet-50, Resnet-

101, MobileNetV2 and Inception-v3. Resnet-50/101 was designed by 

Microsoft [3] while Inception-v3 and MobileNetV2 was designed by 

Google [11, 10] [9]. 
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The aim of this research is to compare and evaluate the ML.NET 

library against Python utilizing transfer learning on an image dataset 

containing images of vehicles in categories related to damage.

SPECIFIC AIM

Fig. 01: Inception-v3 architecture validation accuracy across 

30 epochs with 3 runs.

Fig. 02: Resnet 101 architecture validation accuracy across 

30 epochs with 3 runs.

Fig. 03: MobileNet V2 architecture validation accuracy 

across 30 epochs with 3 runs.

Fig. 04: Inception-v3 architecture runtime with 3 runs. Fig. 05: Resnet 101 architecture runtime with 3 runs.
Fig. 06: MobileNet V2 architecture runtime with 3 runs.
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