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Abstract

Gravitational n-body models can be used to simulate the dynamical evolution of colliding
galaxies. Given observational data in the form of images of the galaxies, it is possible to es-
timate the true values of the various dynamical parameters through the careful application
of optimization methods. However, the optimizing of such n-body models can be quite
difficult for a number of reasons. First, full n-body codes are computationally expensive
and the application of any optimization method requires many model runs. Second, due
to the dimensionality and non-linearity of the system, the parameter space that must be
explored is very complex. To address these challenges, we developed multi-factor similarity
scoring functions which are able to able to accurately perform morphological comparisons
between model and target images. Using these functions, we apply a novel adaptive kernel
mixing strategy which can be applied in both stochastic optimization and Markov chain
Monte Carlo contexts. Using simulated models with known parameters as a surrogate for
actual observational data, we test our fitness and optimization techniques for robustness,
accuracy, and convergence.

1 Introduction

Terminology:

�Morphology: a galaxy’s shape

�Dynamical history: its trajectory

� Interaction: an event where close passage of two galax-
ies causes tidal disturbances in their morphology

�Tidal features: distortions in the original morphology
of a galaxy due to an interaction

Simulation of interacting galaxies with
SPAM code:

�Uses restricted 3-body scheme for fast runtime

�Galaxies represented as a center of mass surrounded
by a cloud of massless particles

�One galaxy (the primary) is held fixed at the origin
while the other (secondary) orbits around it

�Takes 14 dynamical parameters as input:
x, y, z, vx, vy, vz,mp,ms, ρr, ρs, φp, φs, θp, θs

Goals:

�Fit models of interacting galaxies to a given observational target image

�Analyze the relationship between morphology and dynamical history

�Estimate true values of dynamical parameters

Challenges:

�Complex, degenerate parameter space

�Overabundance of poor models

�How to quantify similarity b/t model and
target images

Solutions:

�Two-factor similarity scoring methods

�An adaptive kernel mixing strategy appli-
cable in stochastic optimization or Markov
chain Monte Carlo contexts

2 Methods

Using any single score as a metric for similarity leads to an
unintuitive ranking of model quality:

Images created by applying a 2D
histogram (x, y) to the particle po-
sitions output by SPAM using log-
arithmic scaling.

The images to the right display some
of the different morphologies which
can immerge from tidal interactions.
The numbers under each image are a
calculation of the repsective image’s
similarity (using a particular machine
scoring technique) with the top right
image, which serves as an artificial tar-
get image. As can be seen, though the
numbers do a reasonably good job of
distinguishing good matches, it fails in
several places. For instance, the bot-
tom right image is clearly less similar
to the target than the top center im-
age, and yet it’s score is higher.

Challenges to similarity scoring:

�Models with a small degree of tidal distortion are biased too high

�Models which have significant distortion tend to be scored too low if the
distortions occur in different places from the target

�The majority of models are low-distortion

�Due to symmetries in the geometry of the system, disparate parameter
sets can lead to nearly identical model images (degeneracy).

Solution: quantify the amount of tidal distortion and include this as an-
other term in our scoring function

�TM score: comparison of the
target and model images

�MU score: comparison of
the model and “unperturbed
model” images

What is an unperturbed model?

Perfectly undistorted disk galaxies are
translated to the final simulation posi-
tion in order to see where interactions
create create distortions

Similarity score: flattened binary intensity correlation
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Optimization technique: genetic algorithm (GA) Uses an pop-
ulation of candidate solutions to the problem which improve over time via
a simulated evolutionary process (define the size of population Npop and
number of generations Ngen)

3 Results

Below: convergence results for a single GA run. Blue points:
solutions tested by the GA. Red lines: true parameter values
for target. Dashed green lines: parameter values for the best
model found. Right: the target image and best model image
found by the GA (similarity score of 0.91/1.00).

Analysis:

Comparing the target image and best model image, we can see
that our GA was able to match the morphology of the primary
galaxy quite well, but failed to capture the tidal tails of the
secondary. Since the orientation of the secondary galaxy is de-
coupled from the orbital trajectory and the orientation of the
primary galaxy, we can produce a model that agrees with most
of the major features of the target but gets the orientation (and
tidal features) of the secondary galaxy wrong. To the right, we
have an image of the orbit of the target (black line), several
of the best found solutions (red lines), and a modified target
where we have inverted the trajectory of the secondary galaxy
(magenta line). This model reproduces the tidal features of
the primary galaxy, but not the secondary galaxy. Models like
these will inevitably be scored highly, creating a false maxi-
mum.

4 Conclusions

The combination of our patricular similarity scores and our chosen optimization scheme
leads to a high degree of morphological convergence. However, due to morphological de-
generacies inherent within the system, multiple disparate regions of parameter space lead
to very similar images, thus causing convergence of several parameters to incorrect values.
To combat this, we plan to investigate the symmetries within the system which lead to
this degeneracy and implement measures in the optimization scheme to account for them.


