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Working memory is a part of our brain’s memory system that 
temporarily retains a small amount of information which we use to 
accomplish tasks. Using a framework called the Working Memory 
Toolkit, we can easily model working memory based on cognitive 
neuroscience models using reinforcement learning (RL). The toolkit 
implements RL traditionally on a single-layer neural network, and the 
conceptual information encoded as holographic reduced representation 
(HRR) vectors can get quite large. In more complicated problems, 
learning can also be unstable and tricky to converge due to 
“randomness” in the environment, requiring additional effort to solve. 
By replacing the single-layer neural network with a multi-layer neural 
network using deep Q-learning, we show that the size of the HRR 
vectors can be reduced while retaining a reliably learning ability. The 
gathered evidence also suggests that double Q-learning reduces the 
noise in the learned Q-functions from exploratory actions. By 
incorporating combinations of these algorithms into the WMtk, the 
memory usage required for the tasks can be reduced while still learning 
and further stabilizing the desired Q-function; thus, leading to potential 
advancements in working memory modeling.

Abstract

● Implement and integrate double Q-learning and deep Q-learning 
into the Working Memory Toolkit model

● Show that deep Q-learning can reduce the size of the HRR vectors 
required for reliable learning

● Show that the integration of double Q-learning can stabilize learning 
by reducing noise and increase learning reliability in stochastic 
environments

Specific Aims

Intermediate Results & Conclusions

Background

● To encode conceptual information for the neural networks, the 
WMtk uses HRR vectors to automate the encoding process[1]. Every 
single information concept is represented by a unique HRR vector. 
Concepts can be combined through the means of circular 
convolution to produce a new unique HRR vector that is orthogonal 
to the original vectors [4], allowing the neural network to learn and 
make predictions on that combined concept. This idea allows a 
single neural network to learn many tasks, and adapt to new tasks 
without changing the structure of the net. This model has been been 
labeled as “N-task.”

● While HRR vectors are very powerful in that sense, they grow in size 
very quickly. Even in problems that require a small number of 
state-spaces require a large HRR vector size to retain orthogonality 
after the circular convolutions [1, 8]. One approach to mitigate this 
issue is to incorporate the deep Q-learning algorithm into the 
WMtk. The WMtk traditionally uses a single-layer critic network to 
evaluate the actions the agent can take. Deep Q-learning 
implements Q-learning on a multi-layer neural network [6]. By 
replacing Q-learning with deep Q-learning, the agent could retain 
the learning ability and reliability while reducing the size of the HRR 
vectors.

● Another variation of Q-learning is double Q-learning. Double 
Q-learning aims to solve the issues of overestimation that can occur 
in certain stochastic environments using traditional Q-learning. 
These overestimations can cause often cause difficulties when 
learning more complicated tasks, or when there is randomness in 
the reward schedule [2]. Double Q-learning works by incorporating 
a second Q-function. Rather than updating itself, a Q-function that 
makes a prediction updates the expected value on the other 
Q-function [2]. This behavior could stabilize and reduce noise that 
occurs in traditional Q-learning.

● The Working Memory Toolkit (WMtk) is a framework that allows 
easy integration of working memory into artificial intelligence (AI) 
agents [3].

● Q-learning is a popular temporal-difference learning (TD-learning) 
algorithm that is specifically designed to learn the Q-function, the 
function that calculates the expected reward given a state [5, 7].

● Double Q-learning is a variation to the Q-learning TD-learning 
algorithm that aims to reduce the learning overestimation that 
traditional Q-learning is prone to do in some stochastic 
environments [2].

● Deep Q-learning is another variation of the Q-learning algorithm 
that implements it on a multi-layer neural network. The deep neural 
network is capable of learning more sophisticated functions than 
single-layer neural networks [6].
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Methods

● As this is a standalone project implemented outside of the actual 
working memory toolkit, a small reinforcement learning framework  
was constructed to allow quick and easy manipulation of the 
provided Q-learning algorithm. Everything was implemented using 
Python and Keras (with Tensorflow backend) in a Jupyter Notebook.

● In order to test the new models, a simple 1D maze problem was built 
up. On each episode, the agent is placed at a random position in the 
maze and must navigate to the specified goal position by moving 
either left or right. A epsilon-greedy approach was used for 
exploratory actions. This task is illustrated in Figure 1.

● To incorporate the usage of working memory, the agent is presented 
with a signal on the first step of an episode which indicates what the 
goal position is. The agent must learn to hold onto this signal in 
memory so that it may find the goal. This gives the agent two 
additional actions that it must consider when making a move: store 
the signal that is currently in the environment (could be no signal at 
all), or protect what is currently in memory.

● To test the learning ability of the deep Q-learning model, the size of 
the HRR was simply reduced such that the deep Q-learning model 
retained a reliable learning ability. Assuming our predictions are 
correct, using this HRR size with the traditional model should result 
in unreliable learning behavior or even complete failure to learn the 
function.

● Double Q-learning should result in more stable learning and reduce 
the effects of noise, especially in more stochastic environments. By 
adding “randomness” to the reward schedule, this effect can be 
simulated and compared.

Figure 1: Maze problem diagram

● The implementation of deep Q-learning into the working memory 
model resulted in an immediate improvement to the 
ability/reliability of learning when working with smaller HRR vectors. 
The deep Q-learning implementation used included a single hidden 
layer equivalent to half the size of the HRR vectors. This additional 
layer granted the neural network the ability to learn a more complex 
function, thus allowing it to distinguish the HRR vectors more easily. 
Figure 2. Shows a comparison of the results of Q-learning vs. deep 
Q-learning after 10,000 episodes with the same learning 
parameters. In testing, deep Q-learning managed to reliably learn 
the optimal Q-function with the smaller HRR vectors while standard 
Q-learning either struggled greatly or failed entirely. In practice, it 
was found that the HRR size could be reduced by nearly fifty 
percent, while retaining a reliable learning ability. This could allow 
the inclusion of additional conceptual information within the same 
memory space.

● While inconclusive, evidence suggests that the inclusion of double 
Q-learning reduces noise in the learning process, and therefore 
learns the Q-function more reliably. Due to time constraints within 
this project, support for this claim has not yet been properly 
gathered. It was recognized during experimentation however that 
with double Q-learning the noise from exploratory actions was 
reduced, allowing the agent to “learn” the optimal function in fewer 
episodes, whereas traditional Q-learning required either additional  
episodes or an annealing schedule for epsilon to “learn” the function.

Figure 2: Standard Q-learning vs. deep Q-learning with smaller HRR vectors
Maze Size: 20; HRR Size: 64, learn rate: 0.05, epsilon: 0.2, discount: 0.95


