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An integral function of fully autonomous robots and humans is the ability to focus 
attention on a few relevant percepts to reach a certain goal while disregarding irrelevant 
percepts. Humans and animals rely on the interactions between the PreFrontal Cortex 
(PFC) and the Basal Ganglia (BG) to achieve this focus called Working Memory (WM). 
The Working Memory Toolkit (WMtk) was developed based on a computational 
neuroscience model of this phenomenon with Temporal Difference (TD) Learning for 
autonomous systems. Recent adaptations of the toolkit either utilize Abstract Task 
Representations (ATRs) to solve Non-Observable (NO) tasks or storage of past input 
features to solve Partially-Observable (PO) tasks, but not both. We propose a new 
model, PONOWMtk, which combines both approaches, ATRs and input storage, with a 
static or dynamic number of ATRs. The results of our experiments show that PONOWMtk
performs effectively for tasks that exhibit PO, NO, or both properties.

Abstract

Introduction

For our Partially-Oberservable Non-Observable Working Memory Toolkit, we took the main components of the Working Memory Toolkit and the N-task Learning toolkit and combined 
them. On top of the combination, we implemented several feature for smoother learning and more success. To understand the techniques, we consider a maze task where a robot is 
dropped into a maze and has to find the goal state by moving left and right.

Methods

The results on the right analyses all three kinds of tasks 
(Fully, Partially, and Non-Observable), both the reset and 
transfer method, and both static and dynamic thresholds. 

For both the Partially and Non-Observable tasks the model is 
able to solve the tasks with almost 100% accuracy due to the 
fact that it is leaning on its constituents. However, when the 
model is faced with the combined tasks, it does very bad. 
The kernel density estimation puts the accuracy around 50%. 
Our model was made for the purpose of solving these kinds 
of problems, but it appears that it cannot. That is because 
the model has not been given the chance to tune its hyper-
parameters.

A combined task is extremely complex, so the model needs 
to tune its hyper-parameters as well as solve the problem as 
mentioned above. With the tuning, the model  is able to 
achieve 90-100% accuracy, thus solving the combined task 
problem. 

Results

Implementation Details

There are several points that we have not gone into detail:

• Bayesian Optimization: Improving results through fine tuning the hyper-parameters 
of the model. The fine tuning is done 

• ATR Switching: There are three main methods of switching ATRs for the model. It can 
switch based on positive error, negative error, or both. Each of theses methods have 
their benefits, but for the best results, a combination of the errors needs to be used.

• Holographic Reduced Representations: For encoding all of the information presented 
to the robot, it uses HRRs. HRRs are just a list of numbers drawn from a normal 
distribution, and each HRR is almost orthogonal to each other. With this method of 
encoding, we can use a simple one-layer neural network to hold all the values for all 
the states that the robot has encountered. 
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Robots, specifically autonomous robots, needs to be able to see the world around them 
to be able to understand and behave like humanoids. We as humans have our own way 
of perceiving the world around us – through the interactions between out Basal Ganglia 
and the Pre-Frontal Cortex. 

For autonomous systems to be able to solve the kind of complex tasks that we expect 
from a true General Artificial Intelligent System, they need to understand to world 
around them. So, we propose a toolkit that will allow robots the ability to think. With 
thought, our model allows a robot to solve complex problems regardless of if the 
problem presents external stimuli for for the entire task like image recognition (fully 
observable), presents external stimuli only for a certain amount like self-driving car 
(partially observable), or no stimuli at all like the Wisconsin Card Sorting task (non 
observable).

Our model is able to replicate the interactions using Temporal Difference Learning, 
Neural Networks, Transfer Learning, Holographic reduced representations, and Abstract 
Task Representations.
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Combined Model for Partially-Observable and Non-Observable Task Switching: Solving 
Hierarchical Reinforcement Learning Problems Statically and Dynamically with Transfer Learning

Background

Our model will take two existing toolkits and combine them (with additional features 
added on top). 

The first constituent of our model is the Working Memory Toolkit:

• Solves Fully and Partially observable tasks

• Creates a memory for the each everything it perceives

• As it solves the task, it forms a value for each memory corresponding to the goal

• Stores the values in a neural network 

The second constituent is the N-task learning toolkit:

• Solves Non observable tasks

• Looks at the environment through lenses or ATRs which correspond to the tasks

• i.e. When making coffee, it looks at the world as though the only thing 
it can do is make coffee

• As it solves the tasks, it associates each lens with a different task

• It can change lenses based on whether the current lens leads to reward (completion 
of the task) 

The two models mentioned above have significant limitations when solving complex real 
world tasks:

• Many real tasks have layers of Observable and Non observable features that neither 
model could solve

• The N-task toolkit forgets everything when it things there is another task

• Additional lens switching mechanisms are needed

Conclusion and Future Work

From the results, it is clear that the model is able to solve the combined task. The model 
is able to rely on its constituents as well as take advantage of its additional features to 
solve all three tasks. But there are some issues that need to be addressed. 

For one, the model is needs to tune its parameters as well as its weights to achieve the 
kind of accuracy that we expect from a model such as this. This is not a unreasonable 
requirement; however, it causes the training time of the model to increase dramatically. 
For use in robotics, the hardware and time is often limited, so the model needs to be 
optimized to fun on smaller systems.

The model also works using a simple one-layer neural network, so there is room for 
more complexity in the model. With the use of more complex model with more hidden 
layers, the model will able to expand its capabilities. 

      

      

                                                       

      

      

         

         

                                        

         

         

         

         

      

      

      

      

                                                                                   

            

               

The robot icon specifies the start location, the “Goal!!” 
specifies the goal for that task, the color of the light 
specifies the external stimuli, the context label specifies 
the different tasks without external stimuli, the arrows 
specify the direction the robot will step into, and the 
lines specify the internal values of each state of the 
maze.

Working Memory Toolkit (Memory switched by stimuli)

• The robot is dropped into a random location

• A color is flashed for one timestep

• Using the color, the robot needs to use the 
corresponding memory to find the goal

N-task Learning Toolkit (ATRs switched by internal error)

• The robot is dropped into a random location

• Without any stimuli, the robot has to find the goal

• Has to understand which context it is in by the reward 
it thinks it will receive at a step. Wrong memory will 
result in unexpected high or low rewards

Partially-Observable, Non-Observable Toolkit (Memory and ATRs switched with stimuli and internal error)

• The robot is dropped into a random location and the robot forms an internal representation (state, signal, 
memory, ATR, and reward) using: 

• The value of each state is calculated using a neural network using: 

• As the robot moves, it learned using the neural network. For this, it needs to understand its errors using:

• It also needs to took at all the moves it has taken so far using: 

• And finally it can update its weights using: 

• To choose a move and memory, the robot using: 

• And chooses the ATR using:

• The model also keeps track of  a threshold that is checked when a large positive of negative error is seen 
in order the consider whether a new ATR is needed. The dynamic threshold if kept using:

Reset and Transfer Method

The robot may be presented 
with any number of tasks, so 
it needs to grow in size to be 
able to handle them all. 
There are two ways to 
expand the capabilities of 
the agent: scraping 
everything is has learned 
(Reset) or saving what it has 
learned (Transfer). For 
transfer, the robot gets all 
the values of the smaller 
network and moves them to 
the larger using: 


