MTSU’s new Mechatronics Engineering degree program is on the cutting edge of a fast-growing industry. Jobs are waiting for engineers to design and enhance robotics and automated systems. The design process of mechatronics combines mechanical, computer, and electrical engineering along with systems integration and technical project management. A surgical robot is a perfect example of a mechatronic system, performing precision mechanical work under sophisticated electronic and sensory control. Unlike traditional programs, MTSU’s mechatronics has a systems approach, breaking the whole down into subsystems and then components, so that graduates can design products with a system in mind, not just one component. Rutherford County auto industry giants Bridgestone, with a mechatronics facility at its LaVergne education center, and Nissan are among worldwide and local partners in the program.
Michigan native Dallas Trahan is among students switching majors after the new Mechatronics Engineering program was approved for fall 2013. Trahan moved with a friend to Nashville while taking a year off college and started attending MTSU “because it was affordable and close by.” His previous academic interest had been electro-mechanical engineering technology. “I want to be a person who can do everything,” Trahan said. “Mechatronics seems to be the way to go. A lot more opportunities could arise; a lot more doors can open than with just an engineering technology degree. With mechatronics, you can do what you want.” First-year coursework in engineering technology will transfer into the new program. Mechatronics engineering courses should begin in spring 2014.
Dr. Ahad Nasab, MTSU mechatronics program coordinator, traveled to Berlin, Germany, in August for an instructor certification workshop at Siemens Technical Academy and to help develop Level 3 certification. MTSU’s mechatronics engineering program is based on a three-tier international certification program created by German engineering firm Siemens AG. Level 3 requires a bachelor’s degree. “We held daily talks on streamlining the Siemens objectives with our new Mechatronics Engineering program,” Nasab said. “Once the model and the requirements are developed, the resulting methods and literature will be distributed worldwide for others to consider Level 3 certification.” New mechatronic and automation equipment costing $500,000 will be housed initially in one of the Voorhies Engineering Technology lab spaces.
While many engineering schools focus on the theoretical, MTSU's Engineering Technology program excels in providing hands-on experiences and skills that are immediately transferrable to the workforce. Examples include
Because this degree program is quite new, employer information is still being compiled. However, potential employers who already hire MTSU graduates with degrees in Engineering Technology include
A Bachelor’s of Science (B.S.) degree is now available in Mechatronics Engineering, another way MTSU is meeting student and workforce needs. Graduates will have the opportunity to earn a Level 3 Siemen’s international mechatronics certification.
For complete curriculum details, click on the REQUIREMENTS tab above.
Mechatronics Engineering is a major in the Department of Engineering Technology. Students may transfer into the program with Level 1 or Level 2 certification.
Other undergraduate degrees available through the department include a major in Engineering Technology, leading to a Bachelor of Science (B.S.) degree in one of three concentrations: Computer Engineering Technology, Electro-Mechanical Engineering Technology, or Mechanical Engineering Technology. Also offered is a major leading to a B.S. in Environmental Sustainability and Technology. Interested students may take courses in Pre-engineering.
Undergraduate minors available include Electronics, Engineering Systems, and Engineering Technology.
Graduate students can pursue a Master of Science (M.S.) degree in either Engineering Technology or Occupational Health and Safety.
Department of Engineering Technology
615-898-2776
Ahad Nasab, program coordinator
Ahad.Nasab@mtsu.edu
The Mechatronics Engineering degree encompasses knowledge and skills in mechanical engineering, electronics engineering, digital controls, computer programming, and project management to enable the students to analyze and design automation and robotics systems used in today's advanced manufacturing environment. This program offers preparation in diagnostics and design of integrated industrial automation systems as well as the various aspects of project and process management, systems engineering, and risk management. This program emphasizes the latest techniques in systems approach in design and problem solving which is highly supported by today's industry. The Mechatronics Engineering program is designed to prepare students for engineering positions as automation system designers and project managers in various industries such as automotive, aerospace, advanced manufacturing, green energy, biotechnology, healthcare, homeland security and defense, and transportation and logistics.
Following is a printable, suggested four-year schedule of courses:
Mechatronics Engineering, B.S., Academic Map
General Education requirements (shown in curricular listings below) include courses in Communication, History, Humanities and/or Fine Arts, Mathematics, Natural Sciences, and Social/Behavioral Sciences.
The following General Education courses are recommended for this major:
3 credit hours
Prerequisite: MATH 1630 or MATH 1730. Introduces various engineering fields. Emphasis on problem-solving techniques and the use of mathematics in analyzing technical problems. Topics such as graphical representation of data, estimation, dimensions, units, error estimates, statistics, and team work addressed. Engineering ethics and impact of engineering solutions on society and the environment.
3 credit hours
Prerequisites: CHEM 1110/CHEM 1111. Origin and behavior of materials. Classifications of materials. Physical metallurgy-mechanical and physical properties, crystalline structure, imperfections in solids, phase diagrams, failure mechanisms in materials, hardening and tempering, isothermal diagrams. Involves hands-on experiences through lab sessions in the use of metallurgical and mechanical testing equipment. Lecture and laboratory.
3 credit hours
Introduction to computer-aided design (CAD) for product design, modeling, and prototyping. Individual use and team-based environment to design and prototype a functional and manufacturable marketable product. Application to design, manufacturing, and analysis using geometric tolerancing and dimensioning. Two hours lecture and three hours laboratory.
3 credit hours
Prerequisites: ENGR 1100 and MATH 1910. Corequisite: PHYS 2011 or PHYS 2111. Mechatronics Engineering majors must complete PHYS 2111. Fundamental concepts and conditions of static equilibrium; their application to systems of forces and couples acting on rigid bodies; and the calculation of centers of gravity, centroids, and moments of inertia.
3 credit hours
Prerequisites: ENGR 2110 and MATH 1920. Kinematics of particles in rectilinear and curvilinear motions. Kinetics of particles, Newton's second law, energy and momentum methods. Systems of particles, Kinematics and plane motion of rigid bodies, forces and accelerations, energy and momentum methods. Introduction to mechanical vibrations.
3 credit hours
Prerequisites: ENGR 1100 and MATH 1910. Fundamentals of electrical circuits. Volt-ampere characteristics for circuit elements; independent and dependent sources; Kirchhoff's laws and circuit equations. Source transformations; Thevenlin's and Norton's theorems; superposition. Phasor analysis, impedance calculations, and computation of sinusoidal steady state responses. AC power, maximum power transfer, and three-phase circuits. Two hours of lecture and three hours of laboratory.
3 credit hours
Prerequisites: ENGR 2130 and MATH 3120. Analysis of the RC and RL first-order circuits. Use of Laplace Transform techniques to analyze linear circuits with and without initial conditions. Characterization of circuits based upon impedance, admittance, and transfer function parameters. Fourier series, circuit analysis with Fourier transform, determination of frequency response of circuits, filter design. Lecture.
3 credit hours
Prerequisite: ENGR 2130. Introduces logic design with emphasis on practical design techniques and circuit implementation. Topics include Boolean algebra; theory of logic functions; mapping techniques and function minimization; logic equivalent circuits and symbol transformations; transistor-transistor-logic (TTL)/metal oxide semi-conductor (MOS) logic into gate implementations; electrical characteristics; propagation delays; signed number notations and arithmetic. Digital design using random logic and programmable logic devices (FPGAs and CPLDs). Two hours lecture and three hours laboratory.
3 credit hours
Prerequisite: ENGR 2130. Introduces use and analysis of electronic circuits and input mechanism of various sensors, design of analog signal conditioning systems based on the system requirement, as well as understanding the theory and the art of modern instrumentation and measurements (I&M) systems. Topics include BJT and MOSFET circuit model and analysis; operational amplifier; instrumentation amplifier; survey of sensor input mechanisms; analog signal conditioning and sensor application; measurement system architecture; errors in measurement; standard used in measurement. Two hours lecture and three hours laboratory.
3 credit hours
Prerequisites: ENGR 2120 and MATH 3110. Continuum, velocity field, fluid statics, manometers, basic conservation laws for systems and control volumes, dimensional analysis. Euler and Bernoulli equations, viscous flows, boundary layers, flow in channels and around submerged bodies, one-dimensional gas dynamics, turbo-machinery. Applications in hydraulic, pneumatic, and fluidics discussed. Two hours lecture and three hours laboratory.
3 credit hours
Prerequisites: ENGR 1210, ENGR 2110, and MATH 1920. Plane stress, plane strain, and stress-strain laws. Application of stress and deformation analysis to members subjected to centric, torsional, flexural, and combined loading. Introduces theories of failure, buckling, and energy methods.
3 credit hours
Prerequisite: ENGR 2120. The kinematics and dynamics of machinery and its applications to mechatronic systems. Analysis of motion translation/rotation in machinery, energy of machine mechanisms. Involves projects, seminars, and workshops regarding graphical, analytical, and numerical techniques for dynamic analysis and synthesis of machines. Two hours lecture and three hours laboratory.
3 credit hours
Prerequisite: Junior standing or permission of instructor. Project management as sanctioned by the International Project Management Institute and how to assess and boost emotional intelligence or soft skills. Student successfully completing course will earn 20 Professional Development Units (PDUs) issued by the International Project Management Institute.
NOTE: This was formerly ET 4915.
3 credit hours
Safety and health in the manufacturing, construction, and utilities industries, including pertinent laws, codes, regulations, standards, and product liability considerations. Organizational and administrative principles and practices for safety management and safety engineering, accident investigation, safety education, and safety enforcement.
NOTE: This was formerly ET 4420 - Industrial Safety.
3 credit hours
Prerequisites: ENGR 2100, ENGR 3915, and ENGR 3970. An interdisciplinary course with both technical and management aspects of large, multifaceted engineering projects. Special emphasis placed on design, implementation, and improvement of mechatronic systems. Topics include systems engineering, engineering management, economics, quality control and engineering, project management, production systems planning and operations, and human factors.
3 credit hours
Prerequisite: Junior standing or permission of instructor. Development of capital budgets. Justification of capital projects using time value of money concepts. Replacement analysis. Review of justification of actual capital projects and computer applications. Introduces economic risk assessment and Lean Six Sigma from an economic viewpoint.
NOTE: This was formerly ET 4970.
1 credit hour credit hours
Prerequisite: Senior standing or completion of all 3000-level courses. Review of topics covered on the general session of the Fundamentals of Engineering exam. Covers all aspects of engineering curriculum including mathematics, engineering probability and statistics, chemistry, computers, ethics and business practices, engineering economics, engineering mechanics (statics and dynamics), strength of materials, material properties, fluid mechanics, electricity and magnetism, and thermodynamics.
3 credit hours
Prerequisites: ENGR 3520 and ENGR 3530 . Introduces programmable logic controllers (PLCs). Emphasizes ladder diagrams and programming of PLC. Introduces network systems such as DeviceNet, ProfiNet, and ProfiBus. Emphasizes the integration of PLCs in automation systems. Two hours lecture and three hours laboratory.
3 credit hours
Prerequisite: ENGR 3510. Single- and three-phase power circuit calculations with phasor diagrams and electromagnetic laws. Magnetic field and circuit analysis. Variable frequency drives. Electromechanical energy conversion and rotating machinery modeling and analysis. Construction, equivalent circuit, and performance analysis of three-phase transformers and DC, induction, and synchronous motors. Two hours lecture and three hours laboratory.
3 credit hours
Prerequisites: ENGR 3520. Theories and applications of control systems, optimization of mechatronic systems, feedback controls, root-locus, digital controls, PID, frequency response, and pole positions. Introduces microcontrollers. Systems approach implemented. Two hours lecture and three hours laboratory.
3 credit hours
Prerequisites: ENGR 3550 and ENGR 3590. Presents specifics in the mechanical design of mechatronic systems. Includes problem analysis, conceptualization, design/material selection, and performance analysis. Addresses mechanical subsystems, bill of materials, and economic analysis of the system. Two hours lecture and three hours laboratory.
3 credit hours
Prerequisites: ENGR 4580 and ENGR 4510. Capstone design project. Design and analysis of a complete mechatronic system using controllers, sensors, and actuators. Advance systems programming with current industrial network programs and GUIs. Implementation of project and process management principles as well as professional documentation and presentation. Two hours lecture and three hours laboratory.
4 credit hours
Prerequisite: MATH 1730 with a grade of C or better or Math ACT of 26 or better or Calculus placement test score of 73 or better. The first of a two-semester sequence using a high-level language; language constructs and simple data structures such as arrays and strings. Emphasis on problem solving using the language and principles of structured software development. Three lecture hours and two laboratory hour.
4 credit hours
Prerequisite: MATH 1730 with a grade of C or better or Math ACT of 26 or better or Calculus placement test score of 73 or better. An introduction to calculus with an emphasis on analysis of functions, multidisciplinary applications of calculus, and theoretical understanding of differentiation and integration. Topics include the definition of the derivative, differentiation techniques, and applications of the derivative. Calculus topics related to trigonometric, exponential, and logarithmic functions also included. Course concludes with the fundamental theorem of calculus; the definition of antidifferentiation and the definite integral; basic applications of integrations; and introductory techniques of integration. Graphing calculator required.
4 credit hours
Prerequisite: MATH 1910 with C (2.00) or better. A topics course providing a wide view of different techniques and applications of calculus in the plane. Techniques of integration and applications of integration fully developed. Power series and Taylor series included. Emphasis on multidisciplinary applications includes Taylor series approximation; applications of integration to physics, biology, and business; and geometric and power series applications. Graphing calculator required.
4 credit hours
Prerequisite: MATH 1920. Adjusts calculus techniques developed in the plane (Calculus I and II) to make them applicable in three-dimensional space. Introductory study of the nature of three-dimensional space and definition of the algebraic calculations in three-dimensional space. Differential and integral calculus definitions and techniques revised to appropriately transfer into this new space. Topics include multivariate functions, partial differentiation, partial integration, multiple integration, and multidisciplinary applications.
3 credit hours
Prerequisite: MATH 1920. The solution and application of ordinary differential equations with emphasis on first order equations, second order linear equations, Laplace Transform method, systems of differential equations, and numerical methods.
0 credit hours
Prerequisites: PHYS 2111; MATH 1920 with a minimum grade of C (2.0). Required corequisite: PHYS 2121. A lecture course that supplements the discussion in PHYS 2121. Topics include a microscopic view of electrical force and field, polarization, electric circuits, magnetic force and field, electric potential, symmetries of fields, Maxwell's equations, electromagnetic radiation, optics, and wave phenomena. One and one-half hours lecture.
4 credit hours
Prerequisites: PHYS 2111; MATH 1920 with a minimum grade of C (2.0). Required corequisite: PHYS 2120. A laboratory-based course to accompany PHYS 2120. Includes discussions, group problem solving, and hands-on activities. Two three-hour sessions.
Curricular listings include General Education requirements in Communication, History, Humanities and/or Fine Arts, Mathematics, Natural Sciences, and Social/Behavioral Sciences categories.
Students should consult their advisors each semester to plan their schedules.
3 credit hours
The first General Education English course. Emphasis on learning to adapt composing processes to a variety of expository and analytic writing assignments. Minimum grade of C- required for credit.
3 credit hours
Prerequisite: ENGL 1010. The second General Education English course. Emphasis on analytic and argumentative writing and on locating, organizing, and using library resource materials in the writing. Minimum grade of C- required for credit.
4 credit hours
Prerequisite: MATH 1730 with a grade of C or better or Math ACT of 26 or better or Calculus placement test score of 73 or better. An introduction to calculus with an emphasis on analysis of functions, multidisciplinary applications of calculus, and theoretical understanding of differentiation and integration. Topics include the definition of the derivative, differentiation techniques, and applications of the derivative. Calculus topics related to trigonometric, exponential, and logarithmic functions also included. Course concludes with the fundamental theorem of calculus; the definition of antidifferentiation and the definite integral; basic applications of integrations; and introductory techniques of integration. Graphing calculator required.
4 credit hours
Prerequisite: MATH 1910 with C (2.00) or better. A topics course providing a wide view of different techniques and applications of calculus in the plane. Techniques of integration and applications of integration fully developed. Power series and Taylor series included. Emphasis on multidisciplinary applications includes Taylor series approximation; applications of integration to physics, biology, and business; and geometric and power series applications. Graphing calculator required.
3 credit hours
Prerequisite: MATH 1630 or MATH 1730. Introduces various engineering fields. Emphasis on problem-solving techniques and the use of mathematics in analyzing technical problems. Topics such as graphical representation of data, estimation, dimensions, units, error estimates, statistics, and team work addressed. Engineering ethics and impact of engineering solutions on society and the environment.
3 credit hours
Prerequisites: CHEM 1110/CHEM 1111. Origin and behavior of materials. Classifications of materials. Physical metallurgy-mechanical and physical properties, crystalline structure, imperfections in solids, phase diagrams, failure mechanisms in materials, hardening and tempering, isothermal diagrams. Involves hands-on experiences through lab sessions in the use of metallurgical and mechanical testing equipment. Lecture and laboratory.
3 credit hours
Introduction to computer-aided design (CAD) for product design, modeling, and prototyping. Individual use and team-based environment to design and prototype a functional and manufacturable marketable product. Application to design, manufacturing, and analysis using geometric tolerancing and dimensioning. Two hours lecture and three hours laboratory.
4 credit hours
Prerequisite: MATH 1730 with a grade of C or better or Math ACT of 26 or better or Calculus placement test score of 73 or better. The first of a two-semester sequence using a high-level language; language constructs and simple data structures such as arrays and strings. Emphasis on problem solving using the language and principles of structured software development. Three lecture hours and two laboratory hour.
4 credit hours
Prerequisite: High school chemistry. Corequisite: CHEM 1111. Fundamental concepts of atomic structure, molecular structure and bonding, chemical reactions, stoichiometric relationships, periodic properties of the elements, thermochemistry, and properties of gases. Three hours of lecture and one three-hour laboratory.
0 credit hours
Corequisite: CHEM 1110.
3 credit hours
Prerequisites: ENGR 1100 and MATH 1910. Corequisite: PHYS 2011 or PHYS 2111. Mechatronics Engineering majors must complete PHYS 2111. Fundamental concepts and conditions of static equilibrium; their application to systems of forces and couples acting on rigid bodies; and the calculation of centers of gravity, centroids, and moments of inertia.
3 credit hours
Prerequisites: ENGR 2110 and MATH 1920. Kinematics of particles in rectilinear and curvilinear motions. Kinetics of particles, Newton's second law, energy and momentum methods. Systems of particles, Kinematics and plane motion of rigid bodies, forces and accelerations, energy and momentum methods. Introduction to mechanical vibrations.
3 credit hours
Prerequisites: ENGR 1100 and MATH 1910. Fundamentals of electrical circuits. Volt-ampere characteristics for circuit elements; independent and dependent sources; Kirchhoff's laws and circuit equations. Source transformations; Thevenlin's and Norton's theorems; superposition. Phasor analysis, impedance calculations, and computation of sinusoidal steady state responses. AC power, maximum power transfer, and three-phase circuits. Two hours of lecture and three hours of laboratory.
4 credit hours
Prerequisite: MATH 1920. Adjusts calculus techniques developed in the plane (Calculus I and II) to make them applicable in three-dimensional space. Introductory study of the nature of three-dimensional space and definition of the algebraic calculations in three-dimensional space. Differential and integral calculus definitions and techniques revised to appropriately transfer into this new space. Topics include multivariate functions, partial differentiation, partial integration, multiple integration, and multidisciplinary applications.
3 credit hours
Prerequisite: MATH 1920. The solution and application of ordinary differential equations with emphasis on first order equations, second order linear equations, Laplace Transform method, systems of differential equations, and numerical methods.
3 credit hours
Prerequisites: ENGL 1010 and ENGL 1020. Traces a specific theme or idea through a number of literary texts that reflect different historical and cultural contexts. Subject will vary.
3 credit hours
Prerequisites: ENGL 1010 and ENGL 1020. The reading of a variety of literary types which illuminate themes and experiences common to human existence.
3 credit hours
Prerequisites: ENGL 1010 and ENGL 1020. Representative works of French, German, and Hispanic authors in English translation. No foreign-language proficiency required. Carries General Education credit.
0 credit hours
Prerequisite: MATH 1910 with a minimum grade of C (2.0). Corequisite: PHYS 2111. A calculus-based introduction to mechanics and wave motion. One and one-half hours lecture.
4 credit hours
Prerequisite: MATH 1910 with a minimum grade of C (2.0). Corequisite: PHYS 2110. Laboratory course to accompany PHYS 2110. Experiments in mechanics, waves, and thermodynamics. Data reduction, error analysis, and report writing. Two three-hour sessions.
0 credit hours
Prerequisites: PHYS 2111; MATH 1920 with a minimum grade of C (2.0). Required corequisite: PHYS 2121. A lecture course that supplements the discussion in PHYS 2121. Topics include a microscopic view of electrical force and field, polarization, electric circuits, magnetic force and field, electric potential, symmetries of fields, Maxwell's equations, electromagnetic radiation, optics, and wave phenomena. One and one-half hours lecture.
4 credit hours
Prerequisites: PHYS 2111; MATH 1920 with a minimum grade of C (2.0). Required corequisite: PHYS 2120. A laboratory-based course to accompany PHYS 2120. Includes discussions, group problem solving, and hands-on activities. Two three-hour sessions.
3 credit hours
Survey of the political, economic, social, cultural, and diplomatic phases of American life in its regional, national, and international aspects. HIST 2010 discusses the era from the beginning to 1877. HIST 2020 discusses the era from 1877 to the present. These courses are prerequisite for all advanced courses in American history and satisfy the General Education History requirement. HIST 2010 is NOT a prerequisite for HIST 2020.
3 credit hours
Survey of the political, economic, social, cultural, and diplomatic phases of American life in its regional, national, and international aspects. HIST 2010 discusses the era from the beginning to 1877. HIST 2020 discusses the era from 1877 to the present. These courses are prerequisite for all advanced courses in American history and satisfy the General Education History requirement. HIST 2010 is NOT a prerequisite for HIST 2020.
3 credit hours
The role of the state in the development of the nation. May be used to satisfy one part of the General Education History requirement.
3 credit hours
Principles and processes of effective public oral communication including researching, critical thinking, organizing, presenting, listening, and using appropriate language. Emphasis on informative, persuasive, special occasion, and extemporaneous (impromptu) speaking. Counts as part of the General Education Communication requirement.
3 credit hours
Prerequisites: ENGR 2130 and MATH 3120. Analysis of the RC and RL first-order circuits. Use of Laplace Transform techniques to analyze linear circuits with and without initial conditions. Characterization of circuits based upon impedance, admittance, and transfer function parameters. Fourier series, circuit analysis with Fourier transform, determination of frequency response of circuits, filter design. Lecture.
3 credit hours
Prerequisite: ENGR 2130. Introduces logic design with emphasis on practical design techniques and circuit implementation. Topics include Boolean algebra; theory of logic functions; mapping techniques and function minimization; logic equivalent circuits and symbol transformations; transistor-transistor-logic (TTL)/metal oxide semi-conductor (MOS) logic into gate implementations; electrical characteristics; propagation delays; signed number notations and arithmetic. Digital design using random logic and programmable logic devices (FPGAs and CPLDs). Two hours lecture and three hours laboratory.
3 credit hours
Prerequisite: ENGR 2130. Introduces use and analysis of electronic circuits and input mechanism of various sensors, design of analog signal conditioning systems based on the system requirement, as well as understanding the theory and the art of modern instrumentation and measurements (I&M) systems. Topics include BJT and MOSFET circuit model and analysis; operational amplifier; instrumentation amplifier; survey of sensor input mechanisms; analog signal conditioning and sensor application; measurement system architecture; errors in measurement; standard used in measurement. Two hours lecture and three hours laboratory.
3 credit hours
Prerequisites: ENGR 2120 and MATH 3110. Continuum, velocity field, fluid statics, manometers, basic conservation laws for systems and control volumes, dimensional analysis. Euler and Bernoulli equations, viscous flows, boundary layers, flow in channels and around submerged bodies, one-dimensional gas dynamics, turbo-machinery. Applications in hydraulic, pneumatic, and fluidics discussed. Two hours lecture and three hours laboratory.
3 credit hours
Prerequisites: ENGR 1210, ENGR 2110, and MATH 1920. Plane stress, plane strain, and stress-strain laws. Application of stress and deformation analysis to members subjected to centric, torsional, flexural, and combined loading. Introduces theories of failure, buckling, and energy methods.
3 credit hours
Prerequisite: ENGR 2120. The kinematics and dynamics of machinery and its applications to mechatronic systems. Analysis of motion translation/rotation in machinery, energy of machine mechanisms. Involves projects, seminars, and workshops regarding graphical, analytical, and numerical techniques for dynamic analysis and synthesis of machines. Two hours lecture and three hours laboratory.
3 credit hours
Prerequisite: Junior standing or permission of instructor. Project management as sanctioned by the International Project Management Institute and how to assess and boost emotional intelligence or soft skills. Student successfully completing course will earn 20 Professional Development Units (PDUs) issued by the International Project Management Institute.
NOTE: This was formerly ET 4915.
3 credit hours
Safety and health in the manufacturing, construction, and utilities industries, including pertinent laws, codes, regulations, standards, and product liability considerations. Organizational and administrative principles and practices for safety management and safety engineering, accident investigation, safety education, and safety enforcement.
NOTE: This was formerly ET 4420 - Industrial Safety.
3 credit hours
Prerequisites: ENGR 2100, ENGR 3915, and ENGR 3970. An interdisciplinary course with both technical and management aspects of large, multifaceted engineering projects. Special emphasis placed on design, implementation, and improvement of mechatronic systems. Topics include systems engineering, engineering management, economics, quality control and engineering, project management, production systems planning and operations, and human factors.
3 credit hours
Prerequisite: Junior standing or permission of instructor. Development of capital budgets. Justification of capital projects using time value of money concepts. Replacement analysis. Review of justification of actual capital projects and computer applications. Introduces economic risk assessment and Lean Six Sigma from an economic viewpoint.
NOTE: This was formerly ET 4970.
1 credit hour credit hours
Prerequisite: Senior standing or completion of all 3000-level courses. Review of topics covered on the general session of the Fundamentals of Engineering exam. Covers all aspects of engineering curriculum including mathematics, engineering probability and statistics, chemistry, computers, ethics and business practices, engineering economics, engineering mechanics (statics and dynamics), strength of materials, material properties, fluid mechanics, electricity and magnetism, and thermodynamics.
3 credit hours
Prerequisites: ENGR 3520 and ENGR 3530 . Introduces programmable logic controllers (PLCs). Emphasizes ladder diagrams and programming of PLC. Introduces network systems such as DeviceNet, ProfiNet, and ProfiBus. Emphasizes the integration of PLCs in automation systems. Two hours lecture and three hours laboratory.
3 credit hours
Prerequisite: ENGR 3510. Single- and three-phase power circuit calculations with phasor diagrams and electromagnetic laws. Magnetic field and circuit analysis. Variable frequency drives. Electromechanical energy conversion and rotating machinery modeling and analysis. Construction, equivalent circuit, and performance analysis of three-phase transformers and DC, induction, and synchronous motors. Two hours lecture and three hours laboratory.
3 credit hours
Prerequisites: ENGR 3520. Theories and applications of control systems, optimization of mechatronic systems, feedback controls, root-locus, digital controls, PID, frequency response, and pole positions. Introduces microcontrollers. Systems approach implemented. Two hours lecture and three hours laboratory.
3 credit hours
Prerequisites: ENGR 3550 and ENGR 3590. Presents specifics in the mechanical design of mechatronic systems. Includes problem analysis, conceptualization, design/material selection, and performance analysis. Addresses mechanical subsystems, bill of materials, and economic analysis of the system. Two hours lecture and three hours laboratory.
3 credit hours
Prerequisites: ENGR 4580 and ENGR 4510. Capstone design project. Design and analysis of a complete mechatronic system using controllers, sensors, and actuators. Advance systems programming with current industrial network programs and GUIs. Implementation of project and process management principles as well as professional documentation and presentation. Two hours lecture and three hours laboratory.
3 credit hours
Survey of the political, economic, social, cultural, and diplomatic phases of American life in its regional, national, and international aspects. HIST 2010 discusses the era from the beginning to 1877. HIST 2020 discusses the era from 1877 to the present. These courses are prerequisite for all advanced courses in American history and satisfy the General Education History requirement. HIST 2010 is NOT a prerequisite for HIST 2020.
3 credit hours
Survey of the political, economic, social, cultural, and diplomatic phases of American life in its regional, national, and international aspects. HIST 2010 discusses the era from the beginning to 1877. HIST 2020 discusses the era from 1877 to the present. These courses are prerequisite for all advanced courses in American history and satisfy the General Education History requirement. HIST 2010 is NOT a prerequisite for HIST 2020.
3 credit hours
The role of the state in the development of the nation. May be used to satisfy one part of the General Education History requirement.
Prerequisite: MATH 1630 or MATH 1730. Introduces various engineering fields. Emphasis on problem-solving techniques and the use of mathematics in analyzing technical problems. Topics such as graphical representation of data, estimation, dimensions, units, error estimates, statistics, and team work addressed. Engineering ethics and impact of engineering solutions on society and the environment.
Prerequisites: CHEM 1110/CHEM 1111. Origin and behavior of materials. Classifications of materials. Physical metallurgy-mechanical and physical properties, crystalline structure, imperfections in solids, phase diagrams, failure mechanisms in materials, hardening and tempering, isothermal diagrams. Involves hands-on experiences through lab sessions in the use of metallurgical and mechanical testing equipment. Lecture and laboratory.
Introduction to computer-aided design (CAD) for product design, modeling, and prototyping. Individual use and team-based environment to design and prototype a functional and manufacturable marketable product. Application to design, manufacturing, and analysis using geometric tolerancing and dimensioning. Two hours lecture and three hours laboratory.
Prerequisites: ENGR 1100 and MATH 1910. Corequisite: PHYS 2011 or PHYS 2111. Mechatronics Engineering majors must complete PHYS 2111. Fundamental concepts and conditions of static equilibrium; their application to systems of forces and couples acting on rigid bodies; and the calculation of centers of gravity, centroids, and moments of inertia.
Prerequisites: ENGR 2110 and MATH 1920. Kinematics of particles in rectilinear and curvilinear motions. Kinetics of particles, Newton's second law, energy and momentum methods. Systems of particles, Kinematics and plane motion of rigid bodies, forces and accelerations, energy and momentum methods. Introduction to mechanical vibrations.
Prerequisites: ENGR 1100 and MATH 1910. Fundamentals of electrical circuits. Volt-ampere characteristics for circuit elements; independent and dependent sources; Kirchhoff's laws and circuit equations. Source transformations; Thevenlin's and Norton's theorems; superposition. Phasor analysis, impedance calculations, and computation of sinusoidal steady state responses. AC power, maximum power transfer, and three-phase circuits. Two hours of lecture and three hours of laboratory.
Prerequisites: ENGR 2130 and MATH 3120. Analysis of the RC and RL first-order circuits. Use of Laplace Transform techniques to analyze linear circuits with and without initial conditions. Characterization of circuits based upon impedance, admittance, and transfer function parameters. Fourier series, circuit analysis with Fourier transform, determination of frequency response of circuits, filter design. Lecture.
Prerequisite: ENGR 2130. Introduces logic design with emphasis on practical design techniques and circuit implementation. Topics include Boolean algebra; theory of logic functions; mapping techniques and function minimization; logic equivalent circuits and symbol transformations; transistor-transistor-logic (TTL)/metal oxide semi-conductor (MOS) logic into gate implementations; electrical characteristics; propagation delays; signed number notations and arithmetic. Digital design using random logic and programmable logic devices (FPGAs and CPLDs). Two hours lecture and three hours laboratory.
Prerequisite: ENGR 2130. Introduces use and analysis of electronic circuits and input mechanism of various sensors, design of analog signal conditioning systems based on the system requirement, as well as understanding the theory and the art of modern instrumentation and measurements (I&M) systems. Topics include BJT and MOSFET circuit model and analysis; operational amplifier; instrumentation amplifier; survey of sensor input mechanisms; analog signal conditioning and sensor application; measurement system architecture; errors in measurement; standard used in measurement. Two hours lecture and three hours laboratory.
Prerequisites: ENGR 2120 and MATH 3110. Continuum, velocity field, fluid statics, manometers, basic conservation laws for systems and control volumes, dimensional analysis. Euler and Bernoulli equations, viscous flows, boundary layers, flow in channels and around submerged bodies, one-dimensional gas dynamics, turbo-machinery. Applications in hydraulic, pneumatic, and fluidics discussed. Two hours lecture and three hours laboratory.
Prerequisites: ENGR 1210, ENGR 2110, and MATH 1920. Plane stress, plane strain, and stress-strain laws. Application of stress and deformation analysis to members subjected to centric, torsional, flexural, and combined loading. Introduces theories of failure, buckling, and energy methods.
Prerequisites: ENGR 2100, ENGR 2120, and ENGR 3560. Analytical design methods. Stress analysis, working stress, combined stresses, failure theories, fatigue failure. Design techniques for shafts, fasteners, gears, bearings, and belt and chain drives. Includes a design project. Two hours lecture and three hours laboratory.
Prerequisite: ENGR 2120. The kinematics and dynamics of machinery and its applications to mechatronic systems. Analysis of motion translation/rotation in machinery, energy of machine mechanisms. Involves projects, seminars, and workshops regarding graphical, analytical, and numerical techniques for dynamic analysis and synthesis of machines. Two hours lecture and three hours laboratory.
Prerequisite: Junior standing or permission of instructor. Project management as sanctioned by the International Project Management Institute and how to assess and boost emotional intelligence or soft skills. Student successfully completing course will earn 20 Professional Development Units (PDUs) issued by the International Project Management Institute.
NOTE: This was formerly ET 4915.
Safety and health in the manufacturing, construction, and utilities industries, including pertinent laws, codes, regulations, standards, and product liability considerations. Organizational and administrative principles and practices for safety management and safety engineering, accident investigation, safety education, and safety enforcement.
NOTE: This was formerly ET 4420 - Industrial Safety.
Prerequisites: ENGR 2100, ENGR 3915, and ENGR 3970. An interdisciplinary course with both technical and management aspects of large, multifaceted engineering projects. Special emphasis placed on design, implementation, and improvement of mechatronic systems. Topics include systems engineering, engineering management, economics, quality control and engineering, project management, production systems planning and operations, and human factors.
Prerequisite: Junior standing or permission of instructor. Development of capital budgets. Justification of capital projects using time value of money concepts. Replacement analysis. Review of justification of actual capital projects and computer applications. Introduces economic risk assessment and Lean Six Sigma from an economic viewpoint.
NOTE: This was formerly ET 4970.
Prerequisite: Senior standing or completion of all 3000-level courses. Review of topics covered on the general session of the Fundamentals of Engineering exam. Covers all aspects of engineering curriculum including mathematics, engineering probability and statistics, chemistry, computers, ethics and business practices, engineering economics, engineering mechanics (statics and dynamics), strength of materials, material properties, fluid mechanics, electricity and magnetism, and thermodynamics.
Prerequisite: Permission of department. Introduces new topics in various areas of advancement in engineering as related to mechatronics, automation, and robotics. Content varies depending on topics addressed.
Prerequisites: ENGR 3520 and ENGR 3530 . Introduces programmable logic controllers (PLCs). Emphasizes ladder diagrams and programming of PLC. Introduces network systems such as DeviceNet, ProfiNet, and ProfiBus. Emphasizes the integration of PLCs in automation systems. Two hours lecture and three hours laboratory.
Prerequisite: ENGR 3510. Single- and three-phase power circuit calculations with phasor diagrams and electromagnetic laws. Magnetic field and circuit analysis. Variable frequency drives. Electromechanical energy conversion and rotating machinery modeling and analysis. Construction, equivalent circuit, and performance analysis of three-phase transformers and DC, induction, and synchronous motors. Two hours lecture and three hours laboratory.
Prerequisites: ENGR 3520. Theories and applications of control systems, optimization of mechatronic systems, feedback controls, root-locus, digital controls, PID, frequency response, and pole positions. Introduces microcontrollers. Systems approach implemented. Two hours lecture and three hours laboratory.
Prerequisites: ENGR 3550 and ENGR 3590. Presents specifics in the mechanical design of mechatronic systems. Includes problem analysis, conceptualization, design/material selection, and performance analysis. Addresses mechanical subsystems, bill of materials, and economic analysis of the system. Two hours lecture and three hours laboratory.
Prerequisites: ENGR 4580 and ENGR 4510. Capstone design project. Design and analysis of a complete mechatronic system using controllers, sensors, and actuators. Advance systems programming with current industrial network programs and GUIs. Implementation of project and process management principles as well as professional documentation and presentation. Two hours lecture and three hours laboratory.
Graduates of the Mechatronics Engineering program will pursue careers in design, development,
analysis, implementation, operation, optimization and management of mechatronics systems
and to lead projects as required, engage in self-directed continuing professional
development, and join a professional society, such as ASME, SAE. SME. ASEE, IEEE,
etc.
etdept@mtsu.edu
615-898-2776
Susanna Wassom (A-G)
Susanna.Wassom@mtsu.edu
615-898-2672 | DSB 120
Bailey Ingram (H-Z)
Bailey.Ingram@mtsu.edu
615-898-2268 | DSB 120
Department of Engineering Technology
Middle Tennessee State University
MTSU Box 19
1301 East Main Street
Murfreesboro, TN 37132
MTSU’s new Mechatronics Engineering degree program is on the cutting edge of a fast-growing indust... [more]
From the acclaimed academic programs and state-of-the-art facilities to MTSU campus life and our thr... [more]
2018, Middle Tennessee State University, 1301 East Main Street, Murfreesboro, TN 37132-0001 USA +1-615-898-2300
Middle Tennessee State University, in its educational programs and activities involving students and employees, does not discriminate on the basis of race, color, religion, creed, ethnic or national origin, sex, sexual orientation, gender identity/expression, disability, age (as applicable), status as a covered veteran or genetic information. [Nondiscrimination Policy] European Union (EU) citizens, please note that MTSU will collect personally identifying information and other data about you and may share that data with other agencies as required. [Terms]